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Abstract. State estimation is a key issue of battery management system (BMS) to improve the energy 
utilization of traction battery in electric vehicle, which is usually achieved based on battery model. The 
commonly used models, equivalent circuit model (ECM) and electrochemical mechanism-based model 
(EMM), are reviewed in this paper. Besides, the corresponding parameter identification methods are 
analysed considering the target application background.  

1 Introduction 

As the important means of transportation, vehicle plays 
an important role in our daily life. With the increasing of 
vehicle holdings, the vehicles with oil as the main fuel 
source have brought a lot of pressure to the energy and 
environment all over the world. Under this circumstance, 
the new energy vehicle has become the new development 
direction of auto industry, among which electric vehicle 
is the main force. 

Due to the high energy density and long lifetime, 
Lithium-ion batteries are wildly applied as the in-vehicle 
energy storage unit 12. Safe and efficient management of 
lithium-ion battery is the key to take full advantage of 
battery energy and extend the driving range of electric 
vehicles. The structure and working principle of traction 
battery system in electric vehicle are shown in Fig. 1. 

 
Fig. 1. Structure and work principle of traction battery system 

in electric vehicle 
 

In general, battery states are estimated based on 
model as well as the sampling working conditions and 
are used as the basis of developing management strategy 
in battery management system (BMS). Therefore, the 
model embedded in the BMS should provide high 
accuracy and real-time performance. Meanwhile, the 
applicable methods of parameter identification need to be 
chosen according to the application purpose and 
conditions. 

2 Lithium-ion battery model and 
parameter identification 

The widely used models of battery state estimation 
include equivalent circuit model (ECM) and 
electrochemical mechanism-based model (EMM). 

2.1 Equivalent circuit model 

The ECM mainly simulates lithium-ion battery external 
characteristics by building equivalent circuit with 
electronic components such as resistor and capacitor. The 
earliest R-int model just reflects battery inner impedance 
with a resistor, and a single RC module in parallel is 
added to describe electrode polarization in Thevenin 
model 3. Hu 4 analyzed 12 ECM including models with 
nRC module or hysteresis module and found that the 
higher order of the model leads to the higher accuracy 
with more calculation added inevitably. 
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(a) Rint model                                                (b) nRC ECM 

 
(c) Runtime-based model 

Fig. 2. The commonly used ECM 
 

The runtime-based model (RTM) was established 
with SOC simulation module added to the second-order 
RC ECM. In the RTM, current-controlled current source 
was used for battery working current simulation and the 
real-time SOC was obtained by ampere-hour integral567. 
Both the terminal voltage response and battery runtime 
estimation could be carried out, but there wasn’t essential 
difference in voltage simulation compared to the second-
order RC ECM. 

2.2 Electrochemical mechanism-based model 

The EMM simulates the working characteristics of 
lithium-ion battery by describing the internal 
electrochemical reactions. Pseudo-two-dimensional (P2D) 
model 8, based on porous electrode theory and 
concentrated solution theory, is regarded as the basis of 
EMM. With a series of partial differential equations 
employed to precisely describe the internal 
electrochemical mechanism, P2D model is capable to 
simulate both external characteristics of lithium-ion 
battery and the variation of inner electrochemical 
variables 910, but the extremely complex computation 
makes it difficult to operate in real-time 1112.  

To achieve the dual effect of simplifying model 
operations while maintaining model accuracy, some 
simplified EMMs have been developed, among which, 
the single particle model (SPM) is the most 
representative 13. With the assumption that the 
electrochemical reactions at the electrodes are uniform, 
the active material of each electrode is simplified to a 
single particle and the electrolyte phase diffusion is 
neglected. Accordingly, the simulation accuracy of the 
SPM at high-rate is lost 1415. Besides, EMM involves 
many electrochemical parameters, the identification of 

which is usually time-consuming and can hardly be 
achieved online 16. 

3 Model parameter identification 

Parameter identification of the established model makes 
a great impact on model simulating performance. In 
general, the identification methods are mainly divided 
into online identification and offline identification. 

3.1 Online identification 

Online identification helping model parameters to update 
in real time is achieved though algorithms such as 
Kalman Filter (KF), recursive least square method, and H 
infinity algorithm 17, in which the sampling data works 
as the feedback 18. Thus, online parameter estimation is 
beneficial to adapt the model to dynamic working 
conditions. 

3.2 Offline identification 

Offline identification of parameters is usually realized by 
state equation fitting or genetic algorithm based on the 
battery experimental data under specific working 
conditions 1920. Although the precision of parameters is 
not as good as those identified online, offline 
identification shows advantages from some aspects. On 
one hand, the real-time operation efficiency of the model 
could be improved with the parameters calibrated offline. 
On the other hand, it offers solution to the cases where 
online identification could not be realized. For instance, 
the parameters of the EMM are highly coupled 2122 and 
the parameter identification in the prediction time 
domain lacks of real-time systematic feedback 23. 
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4 Conclusion 

As for model embedded in the BMS, the ECM is more 
suitable for battery real-time state estimation in electric 
vehicle, balancing the calculation and estimation 
accuracy. And the limitation of the ECM in simulation 
accuracy at low SOC range could be got over by 
combining the internal electrochemical process of 
lithium-ion battery. 

In the above model parameter identification methods, 
the offline identification is not adaptable to dynamic 
conditions, and the online identification causes initial 
errors and could hardly be achieved in the prediction 
period. Thereby, online identification is suitable for 
updating parameters in real time based on output error, 
while offline identification could be used to obtain 
parameters in typical battery state, to correct possible 
initial errors in online identification, and to calibrate 
model parameters for state prediction. 
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