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Abstract. Recently, energy scarcity and environmental pollution have become increasingly serious 
problems, while the scheduling of energy savings is attracting increasing attention from industries to 
minimize energy consumption. This article deals with the problem of scheduling production and 
maintenance under energy constraints in the flow shop. Two mixed binary integer programming models are 
provided to derive optimal scheduling to minimize total energy consumption (TEC). To solve this problem, 
we use an approximate method as a genetic algorithm (GA). 

1�Introduction�
It is certainly indisputable that the climate changes 
induced by this increase in the concentration of 
greenhouse gases will have multiple consequences that 
are still difficult to identify. However, they are expected 
to cause regional and global changes in temperature, 
precipitation and other climate variables, which could 
result in global changes in soil moisture, rising mean sea 
level and the prospect of more severe episodes of 
extreme heat, flooding and drought. 
Excessive emissions of greenhouse gases and in 
particular carbon dioxide produced by the combustion of 
fossil fuels.  Although fossil fuels have been widely used 
for electricity production, rational use of energy will 
contribute to a significant reduction in carbon emissions.   
Manufacturing industry has always been a major 
consumer of energy. As a result, modern government 
regulations have forced manufacturers to adopt energy-
saving measures [1]. In particular, the researchers 
understood that scheduling could play an important role 
in reducing the energy consumption of manufacturing 
processes. Therefore, operational research tools and 
metaheuristic research methods, such as genetic 
algorithm [2], particle swarm optimization [3] and 
simulated annealing [4], are also used for the design of a 
cleaner production system. 
The purpose of this article is to establish two models for 
integrated scheduling of production and maintenance 
tasks, in order to minimize total energy consumption. 
We use an approximate method as a genetic algorithm 
(GA). 

2�PROBLEM�DESCRIPTION�
This section addresses the problems of integrated 
scheduling of fixed and flexible production and 
maintenance jobs with the integration of the machine's 

dynamic speed variation technique into the non-
switching flow shop, where the objective is to minimize 
total energy consumption (TEC).   

Table�1. The notation used to formulate the problem 

Indices:�
 
i 
j 
�, �� 
l 
��

 
 
Index of jobs  
Index of machines  
Indices of the position in each machine 
Index of the batch in each machine 
Index of speed level�

Sets: 
J  
M�
O� 
 
BH�,� 

 
 
set of jobs; J = {J�, J	, … , J
} 
set of machines; M = {M�, M	, … , M�} 
set of the operations of J�; O� =
{O�,�, O�,	, … , O�,�}  O�,� is the operation of 
J� in  M� 
set of the batches in the �
� batch in 
machine M� 

Parameters : 
n  
m 
��
w�,� ��
�
����
P�,��
�
TBF� 
 
PM� 
Z 
���� 
 
P� 

 
Number of jobs 
Numbre of machines 
Numbre of speed level 
The required workload of the job �  (1 �
 � �  �)  in the machine �  (1 �  � �  �) 
Processing speed of a machine operating 
at a speed level s. 
The processing power of each operation 
O�,� in machine j. 
The period between two consecutive 
unavailability intervals in M� 
The maintenance time of the machine M� 
An infinite integer  
The makespan, which corresponds to the 
maximum execution time of all jobs  
The common power, consumed by 
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auxiliary equipment and installations  
The total energy consumption of the 
treatment O�,� 
The common energy consumption of the 
auxiliary installations in the flowshop  
The total energy consumption in the "flow 
shop". 

- All jobs are available at the beginning of the 
scheduling horizon, 

- The optimal job sequences are not necessarily 
identical when the unavailability constraint is taken into 
account, even for flow shop workshops with two 
machines. Thus, the non-displacement scheduling is 
considered in this study.  

- The machines can handle jobs at different speed 
levels, which are selected from a set of levels S. 

- Either v� (1 �  s �  S)  represents the processing 
speed of a machine operating at the speed level s. 

3� Modelling� of� the� problem� �!|"# $
�%|&'*�

The first case, where unavailability intervals are set 
periodically, is referred to as follows: 

- Unavailability intervals or maintenance periods are 
fixed periodically, is noted Fm|nr $ FI|+-. . 

- The time between two consecutive unavailability 
intervals in M� is TBF� and the maintenance time is  PM�.  

- The lth unavailability interval can be calculated as 
follows:  lth = [l   TBF�  + (l $ 1) PM�  ,   l (TBF�  +
 PM�)]. 

Minimize          
0 0 0 0

23,4  .   67,8,9

:;
 .   x�,�,<,>

?
�@�



A@�

�
�@�

D
�@� +  P� . ���� 

S.t 
0 x�,�,<,>  = 1


�@�                                    ;G j, k, s              (1)                        
0 x�,�,<,> = 1


A@�                                    ; Gj, i, s               (2)  

Constraints (1) and (2) ensure that each job can only be 
placed at one position in the sequence of each machine, 
and that only one job can be placed at each position, 
respectively. 

 
0

2K,4

:;

?
�@� =   0 0 x�,�,<,>

?
?@�   .

23,4

:;



�@�  ; G k  ,   G j  , G s    (3) 

The constraint (3) specifies the processing time of the 
operation�LA,� . 
 
 C<,� =   S<,� +  0

2K,4

:;

?
�@�                   ;  G j > 1  , G k  (4) 

The constraint (4) establishes the link between the start 
time and the end time�of� LA,� .�
S�,� = 0                                                                        (5) 
S<,�  R    C<U�,�                                 ;  G j ,   G k  R 2   (6) 
 

Constraints (5) and (6) ensure that the kth task cannot 
start before the end time of the previous task in W�. 
 
X2 $ x�,�,<,> $ x�,�Y�,<Z,> \^ R  S<,� +  0

23,4

:;

?
�@� $ S<Z,�Y�      

;  G j < m  , i, k, k`, s                                                     (7) 
 

The constraint (7) ensures that the start time of the task i 
in W�Y�  is not earlier than its end time in  W�. 
C<,� =    e<,� + X  PM� + TBF�\ 0  g<Z,�

AU�
AZ@� +

XPM� + TBF�\ 0  q<`,�
AU�
AZ@� ;  G j,   G k  R 1                  (8) 

 C�,� =    e�,�  + X  PM� + TBF�\  q�,�;  G j                      (9) 

Constraints (8) and (9) represent that the arrival time of 
LA,� is equal to the sum of the elapsed time of LA,� and 
the times of the previous batches LA,� , including actual 
and empty batches. 
 
 q<,�  �    g<U�,�                               ;  G j ,   G k  > 1   (10) 

The constraint (10) ensures that no empty batches exist 
between LAU�,� and LA,�  when LAU�,� is not the last task 
of a real batch. 

�
 e<,�   R   0

2K,4

:;

?
�@�                            ; G k  ,   G j           (11) 

 

The constraint (11) ensures that the elapsed time of the 
task is greater than its processing time. 
 
 e<,�   �   TBF�                                  ; G k  ,   G j         (12) 
 

The constraint (12) ensures that no jobs can be processed 
during unavailability intervals.�
 
 e<Y�,� R  e<,� +  0

2Kab,4

:;

?
�@� $  g<,� ^; G k < n ,   G j(13)                        

The constraint (13) ensures that the elapsed time of 
LAY�,� is greater than the sum of the processing time of  
LAY�,� and the elapsed time of LA,� if they're in the same 
batch. 
����  =     C
,�                                                           (14) 

The constraint (14) confirms that the makepan is equal to 
the completion time of the machine's nth task.  
x�,�,<,> ,  g<,�     are of the variables binary                 (15) 
q<,�     is a complete                                                   (16) 
2K,4

:;
 ,  C<,� ,  S<,� ,  e<,�   R 0                                          (17) 
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Generate an initial population 
Build the scheduling corresponding to the production 

plan  
Calculate the fitness for the solution 

 

Select an individual  

Crossing  

Mutation

Return the optimal value 

If the stop 
criterion is 

met 

 

4� Modelling� of� the� problem� �!|"# $
*%|&'*�

Minimize ���������Fct�Obj��������������������������������������������������������������������������������������������������� 
S.t 
Constraint sets (1)-(5) and constraint set (7) are the same 
with the model 1. 
 
S<,�  R  C<U�,� +   PM�  .  y<,�        ;  G j ,   G k  R 2     (18) 
The constraint (18) ensures that the operation LA,� must 
not start before the sum of the end time of the immediate 
previous job in  W� and the possible maintenance time. 
b�,� = 0                                                       ; G j          (19) 
 
y�,� = 0                                                       ; G j          (20) 

Constraints (19) and (20) specify the initial state of the 
system. 
 
a<,� =   b<,� +  0

2K,4

:;

?
�@�                             ; G k  ,   G j  (21) 

 
b<Y�,� =    a<,� ( 1 $ Y<Y�,�)                  ;   G j , k � n  (22) 

Constraints (21) and (22) specify the age of the machines 
before and after each operation�LA,�, respectively.�
 
 a<,� � TBF� ; G k (23)
2K,4

:;
 ,  C<,� ,  S<,�    R 0                                                  (24) 

 

5� Genetic� algorithm� for� solving� the�
models�

The genetic algorithm begins with a step called genesis 
in which a generation of initial Pop_Size size population 
of individuals is generated. For each individual 
generated, a cost function is calculated in order to define 
the adaptation score of the individuals during the 
selection process. These individuals evolve through the 
application of crossing according to a probability Pc. 
Subsequently, the children obtained undergo an 
inversion at the level of the genes with a probability of 
mutation Pm. These three phases of evolution allow with 
a great chance to produce a new population better than 
that of the previous generation. 
With each new generation, the new populations are 
increasing and a loop is made as long as the evaluation 
considers that the solution is not yet optimal. Figure 1 
shows the general mechanism of genetic research. 
 
 

 

 
Figure 1. General mechanism of genetic algorithms 

 
The�pseudo­code�of�genetic�algorithm�:�

In order to solve our problem of integrating the planning 
and ordering of production systems, we present in the 
following the algorithm of the figure 2 which contains 
the main stages of the genetic algorithm. 
The research begins by initializing a population of 
individuals who will be called Popsize (population size), 
Pc is the percentage of growth, Pm is the percentage of 
mutation, max_iteration is the maximum number of 
iterations. The genetic algorithm stops when the 
maximum number of iterations is reached. Among the 
major difficulties of the genetic algorithm is the good 
choice of the values of the Popsize, Pc, Pm and 
max_iteration parameters. 
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Figure 2. The genetic algorithms pseudo-code 

3�Conclusion�
This work concerns the integrated scheduling of 
production and maintenance tasks under energy 
constraints. To our knowledge and according to the 
literature review, the documents dealing with production 
and maintenance scheduling do not take into account 
energy constraints. In the literature, two types of 
unavailability constraints are examined. In the first case, 
the unavailability intervals are fixed periodically and 
known in advance. In the second case, the intervals are 
flexible and the continuous working time of the 
machines cannot exceed the maximum authorised time.  
We solved these problems with two models for 
programming mixed binary integers. MILPs are 
provided with fixed and flexible maintenance types to 
derive optimal schedules in order to minimize total 
energy consumption (TEC). The performance of the 
proposed mixed binary integer programming models is 
evaluated based on the genetic algorithm (GA). A 
comparative study of the results provided with those 
available in the literature proved the performance of the 
model developed. 
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Algorithm: the genetic algorithms pseudo-code 

A�: Initialize Pop size, Pc, Pm and max_iteration ; 

B�: Generate an initial population P (n) which represents a sequencing of jobs on the resources; 

C�:�Calculate the value of fitness (TEC); 

D�: Select the best fitness for the population using the tournament selection method 

E�: Until the number of iteration is reached: 

 For each sequence from 1 to Pop size : 

 Choose randomly 2 sequences of P (n).   

  If random <= Pc : 

   Apply the 2 point cross and produce 2 children.  

                   If random <= Pm : 

    Apply the shift change  mutation ; 

  Copy the children into the new  population ; 

  Evaluate the new  population. 

F�: If the stop criterion is reached, complete and return the optimal value found otherwise return to step D. 
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