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Abstract. The solution to the problem of the stability of a rectangular orthotropic plate is described by the 
numerical-analytical method of boundary elements. As is known, the basis of this method is the analytical 
construction of the fundamental system of solutions and Green’s functions for the differential equation (or 
their system) for the problem under consideration. To account for certain boundary conditions, or contact 
conditions between the individual elements of the system, a small system of linear algebraic equations is 
compiled, which is then solved numerically. It is shown that four combinations of the roots of the 
characteristic equation corresponding to the differential equation of the problem are possible, which leads to 
the need to determine sixty-four analytical expressions of fundamental functions. The matrix of fundamental 
functions, which is the basis of the transcendental stability equation, is very sparse, which significantly 
improves the stability of numerical operations and ensures high accuracy of the results. An analysis of the 
numerical results obtained by the author’s method shows very good convergence with the results of finite 
element analysis. For both variants of the boundary conditions, the discrepancy for the corresponding 
critical loads is almost the same, and increases slightly with increasing critical load. Moreover, this 
discrepancy does not exceed one percent. It is noted that under both variants of the boundary conditions, the 
critical loads calculated by the boundary element method are less than in the finite element calculations. The 
obtained transcendental stability equation allows to determine critical forces both by the static method and 
by the dynamic one. From this equation it is possible to obtain a spectrum of critical forces for a fixed 
number of half-waves in the direction of one of the coordinate axes. The proposed approach allows us to 
obtain a solution to the stability problem of an orthotropic plate under any homogeneous and 
inhomogeneous boundary conditions. 

1 Introduction 

The development level of production at the present stage 
is characterized by the widespread introduction of new 
technologies for the manufacture of high-strength 
materials with orthotropic (orthogonally anisotropic) 
properties. 

Such materials include fiberglass; composite 
materials reinforced with sequentially alternating layers 
of fibers in two mutually perpendicular directions; glued 
wood plates; sheet rolled metals, in which anisotropy 
begins to appear upon transition to the plastic stage of 
work, etc.  

The widespread use of materials with anisotropic 
properties has given rise to large-scale studies in the 
field of mechanics of anisotropic structures and, in the 
first place, plates. 

In many industries, designs in the form of plates 
made of orthotropic materials with three planes of 
symmetry of elastic properties are widely used. Under 
certain conditions, the operation of such plates is 
accompanied by the appearance of compressive stresses 

in the median plane, which can lead to a loss of stability 
and bearing capacity of the plate. 

Determining the critical load on a plate presents 
serious mathematical difficulties not only for 
orthotropic, but also for isotropic plates. In well-known 
monographs and reference books, only the stability 
problem of a rectangular plate with a hinged support 
along the contour is solved [1-4]. 

2 Latest researches analysis 

The stability problem of an isotropic rectangular plate 
loaded on two opposite edges by forces distributed 
according to a linear law was first solved by 
I. G. Bubnov and S. P. Timoshenko [5]. For an 
orthotropic plate, this problem was solved by 
S. G. Lehnitsky [6]. All these classical solutions are 
obtained for the case of the edges simple support of the 
plate in the form of double trigonometric rows. 

From later works, we note I. E. Harik papers [7, 8], 
the first of which sets out a numerical-analytical method 
for the analysis of orthotropic rectangular plates subject 
to uniform, linearly changing and piecewise-continuous 
plane loads; the decision procedure is based on the 
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classical method of variables separation. And the second 
one proposes an analytical method for solving the 
problem of elastic bending of orthotropic rectangular 
plates under different boundary conditions. A 
generalization of all the results obtained in this direction 
was made by F. Bloom and D. Coffin in an interesting 
Handbook [9], which is, in our opinion, the most 
comprehensive review of theoretical methods for 
calculating the stability of thin plates. 

There are very few contemporary works devoted to 
the stability of anisotropic plates. We note the paper 
[10], where the stability problem of an anisotropic plate 
is solved (but again with a hinged support along the 
contour) and the work [11], where the stability problem 
is solved for pure bending of an orthotropic plate, in 
which two opposite edges are free and two other edges 
articulated. The finite difference method was used here. 
The works of foreign authors are based primarily on the 
use of numerical methods, and, most often, the finite 
element method and its modifications are encountered. 
The paper [12] considers the analysis of vibrations and 
stability of thick orthotropic plates using finite elements 
based on the Treffz hybrid formula. The Treffz type 
finite element method (TFEM) is used by C. Young [13] 
to solve some potential problems in orthotropic 
environment. The method of boundary elements in 
classical form was used in [14]. Here, fundamental 
solutions are obtained for orthotropic thick plates with 
allowance for lateral shear strain. Boundary integral 
equations are formulated that are adapted to arbitrary 
boundary conditions. Examples of numerical 
implementation are given. 

3 Research aim 
The aim of research is an experimental study of the 
influence of steel fiber on the bearing capacity, 
deformability and crack resistance of serial reinforced 
concrete multi-hollow slabs manufactured in the factory. 

4 Materials and methods 
Problems of this kind can be solved by numerical 
methods, such as the finite element method, the finite 
difference method, the R-function method, etc., but it is 
advisable to verify the results by any analytical method. 
It seems that such is the NA BEM. As is known [15], the 
basis of this method is the analytical construction of the 
fundamental system of solutions and Green’s functions 
for the differential equation (or their system) for the 
problem under consideration. To account for certain 
boundary conditions, or contact conditions between the 
individual elements of the system, a small system of 
linear algebraic equations is compiled, which is then 
solved numerically. In this case, no restrictions are 
imposed either on the boundary conditions or on the 
nature of the external load. Note that the method is 
strictly mathematically justified, since it uses 
fundamental solutions of differential equations, 
therefore, taking into account the initially accepted 

hypotheses, it allows to obtain exact values of the 
desired quantities of the problem. 

5 Research results 

The differential stability equation of an orthotropic plate 
within the framework of the Kirchhoff-Love hypothesis 
(Fig. 1) can be written as 

 

4 4 4

1 3 24 2 2 4

2 2

2

2

2

( , ) ( , ) ( , )2

( , ) ( , )( ) 2

( , )( ) ( , ),

x xy

y

W x y W x y W x yD D D
x x y y

W x y W x yN y N
x x y

W x yN x q x y
y

  
  

   

 
  

  


 



(1) 

where stiffnesses are defined by formulas  
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Here Ex, Ey – moduli of elasticity in the axis 
directions; G – shear modulus; h – plate thickness; μxy, 
μyx – Poisson’s ratio; W(x, y) – deflection amplitude 
value; Nx(y); Nxy; Ny(x) – forces in the middle plane; 
q(x, y) – transverse load amplitude. 

 
Fig. 1. Plate loads. 

 
The stability equation (1) is of the fourth order and is 

a partial differential equation. Function W(x, y), which is 
the solution of this equation, depends on two variables. 
The transition from a two-dimensional problem to a one-
dimensional one, as required by the algorithm of the NA 
BEM, can be accomplished by applying the 
Kantorovich-Vlasov variational method. 

Let’s expand the deflection W(x, y) into functional 
series: 
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Functions Xi(x) it is necessary to choose such that 
they most accurately describe the shape of the curved 
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surface of the plate in the direction of the axis ox . 
Deflection curves for a beam that has the same abutment 
conditions as the plate in the direction of the axis ox  
meet his requirement. To select the lateral deflection 
distribution function Xi(x) there are known two methods 
– static and dynamic [15]. When using the static method, 
the deflection of the beam is determined by the static 
load. This load should be such that symmetric and skew-
symmetric forms of the deflection curve alternate 
alternately. Functions Xi(x) are represented in the form of 
power polynomials that are easy to differentiate, 
integrate and calculate without the use of complex 
programs. When using the dynamic method, beam 
deflections are represented by forms of its own 
vibrations. In a static way, you need to build functions 
Xi(x) depending on the load and reactions of the beam. In 
the dynamic method, it is enough to change only the 
values of the natural frequencies, which is very 
convenient. 

We will keep in (2) one member of the series, which, 
as shown in [15], is sufficient to obtain a result of 
acceptable accuracy, i.e. 

                        ( , ) ( ) ( ).W x y W y X x  (3) 

Let’s substitute (3) into (1): 

1 1
1 3 22 ( )
2 ( ) ( , ).

V V
x

xy y

D X W D X W D XW N y WX
N W X N x W X q x y

     
     

  (4) 

Multiply both sides of (4) by X and integrate within 
[0; l1], where l1 – plate dimension in axis x direction 
(Fig. 1). 
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We introduce the notation:
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Coefficients A, B, K, C  can be calculated in any 
mathematical program with almost any accuracy. 

From the introduced notation it follows that Ny(x) can 
be any function of x, while Nx(y) and Ny(x) should be 
piecewise constant functions of y, since otherwise, 
equation (5) will be a differential equation with variable 
coefficients. 

Divide all the terms of equation (5) by А: 
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Equation (6) with initial conditions W(0), θ(0), M(0), 

Q(0) forms the Cauchy’s problem: 
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The solution of the Cauchy problem allows us to 
determine the fundamental functions, the form of which 
depends on the roots of the characteristic equation 

                   
4 2 2 3 42 0t r t f t s      (7) 

Consider the practically important case when Nxy = 0. 
Moreover, in equation (7) will be f = 0, and the roots of 
the characteristic equation are calculated by the formulas 

2 4 4
1 4t r r s      

The form of fundamental functions is determined by 
the relation between r and s, which depends on the fixing 
conditions of the longitudinal edges of the orthotropic 
plate. Four options are possible for this ratio: 

1. s r  – complex roots: 1 4t i     , where 
2 2

2
s r 

 ; 
2 2

2
s r 

 . 

2. 4 20, 0s r   – real and imaginary roots: 

1 2 3 4;t t i      . 
3. 4 20, , 0s s r r    – imaginary roots: 

1 2 3 4;t i t i      . 
4. 4 4 4 20, 0, 0s r s r     – real and different 

roots: 1 2 3 4;t t      . 
After determining the fundamental functions, one can 

compose a transcendental equation of stability of an 
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orthotropic plate, which in the general case will have the 
form 

                 *( , , ) 0x y xyA N N N    (8) 

where *A  – a square matrix of values of fundamental 
orthonormal functions with compensating elements 
describing the topology of the system. 

The roots of equation (8) form the spectrum of 
critical forces of the plate in question. 

Let’s look at some examples. We will determine the 
first three critical loads and three forms of buckling of a 
plate made of orthotropic material under two boundary 
conditions: hinged support along the entire contour 
(option 1) and rigid fixing of the plate on three sides 
with a free fourth side (option 2) (Fig. 2). 

 
Option 1 Option 2 

Fig. 2. Two options of boundary conditions. 
 

Initial data for calculation: 
Elasticity moduli – Ex = 5∙103 MPa, Ey = 200∙103 

MPa, Ex = 5∙103 MPa; shear moduli – Gxy = 12,5∙103 
MPa, Gyx = 25∙103 MPa, Gxz = 50∙103 MPa; Poisson’s 
ratios – μxz = 0,1, μyz = 0,15, μxy = 0,0075. 

The numerical implementation of the NA BEM 
algorithm is performed in the Excel. The results are 
shown in table 1. 

Table 1. Critical loads, calculated by two methods. 

Load, 
kN/m 

Option 1 Option 2 
BEM ANSYS % BEM ANSYS % 

σ1 11395 11436 0,36 12320 12372 0,42 
σ2 11758 11808 0,42 35953 36101 0,41 
σ3 14989 14958 0,46 41669 41872 0,48 
σ4 19800 19902 0,51 70552 70855 0,43 
σ5 20002 20133 0,65 80201 80662 0,57 

 
To assess the accuracy of the results, the plate was 

modeled in ANSYS [16]. The calculation of plates by 
the finite element method under two variants of the 
boundary conditions showed good convergence of the 
results obtained by the two methods (Table 1). The first 
three forms of buckling are given in table 2. 

6 Conclusions 
Thus, the stability problem for an orthotropic rectangular 
plate leads to four possible combinations of the roots of 
the characteristic equation of the problem, and, therefore, 
the complete solution of the problem will be determined 

by 64 analytical expressions of fundamental functions. 
The matrix of fundamental functions, which is the 

basis of the transcendental stability equation, is very 
sparse, which significantly improves the stability of 
numerical operations and ensures high accuracy of the 
results. 

An analysis of the numerical results obtained by the 
author’s method shows very good convergence with the 
results of finite element analysis. For both variants of the 
boundary conditions, the discrepancy for the 
corresponding critical loads is almost the same, and 
increases slightly with increasing critical load.  
Moreover, this discrepancy does not exceed one percent. 
It should be noted that for both variants of the boundary  
conditions, the critical loads calculated by the boundary 
element method are less than in the finite element 
calculations. 

The obtained transcendental stability equation allows 
one to determine critical forces both by the static method 
and by the dynamic one. From this equation it is possible 
to obtain a spectrum of critical forces for a fixed number 
of half-waves in the direction of one of the coordinate 
axes. For example, one half-wave in the direction of the 
axis Ox and many half-waves in the direction of the axis 
Oy (Fig. 1), two half-waves in the direction of the axis 
Ox and many half-waves in the direction of the axis Oy 
etc., depending on the magnitude of the coefficients A, 
B, K, C.  

The proposed approach allows us to obtain a solution 
to the stability problem of an orthotropic plate under any 
homogeneous and inhomogeneous boundary conditions. 

4

E3S Web of Conferences 166, 06004 (2020) https://doi.org/10.1051/e3sconf/202016606004
ICSF 2020



 

Table 2. Buckling forms 

Option 1 Option 2 
First form 
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