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Abstract. The aim of the sustainable development strategy is to introduce European standards of living in 
Ukraine and Ukraine’s leading position in the world. Active development is observed in information and 
measurement systems. The article provides a refined mathematical model of the new ballistic laser gravimeter. 
The composition and structure of the main errors of the ballistic laser gravimeter are given. The main errors 
of the ballistic laser gravimeter are calculated and estimated. The computer behavior of ballistic laser 
gravimeter behavior for the most unfavorable resonance modes for different ratios of disturbance values and 
proper ballistic laser gravimeter parameters is performed. It is suggested to use digital video as a medium of 
measurement information in the new ballistic laser gravimeter. 

1 Introduction 
Today, Ukraine needs to become a state with strong 
economies and advanced innovations. To do this, first of 
all, it is necessary to restore macroeconomic stability, to 
ensure sustainable economic growth in an 
environmentally sustainable way, to create favorable 
conditions for economic activity. Active development is 
also observed in information and measurement systems. 
Modern systems must meet both the technical and 
environmental requirements of humanity. 

Measuring the absolute value of gravity acceleration 
with high accuracy is necessary for solving a wide range 
of scientific problems: determining the shape of the Earth, 
constructing models of motion of deep masses, predicting 
earthquakes, inventing deep density inhomogeneities, 
finding minerals, and others. Gravimeters are used to 
determine g. Among them, the most well-known for 
terrestrial measurements are ballistic laser gravimeters 
(BLG). 

It is known that the use of computers as simulation 
devices can: reduce, and in some cases completely 
eliminate the need for physical experiments with real 
devices, greatly reduce the time, improve productivity, 
accuracy of research all this has a significant economic 
effect. 

The article [1] describes an advanced gravimetric 
system for low flow rates that was developed by the 
National Institute of Metrology of Japan (NMIJ) to 
perform the method of flight-start and stop calibration. 
However, there is no description of the mathematical 
model. 

The paper [2] presents the regional gravimetric survey 
of the central part of the Republic of Slovenia. The need 
for a new gravimetric survey, the survey plan and the 
actual field measurements are presented. Data processing, 
control calculations, data adjustment in the form of a 
gravimetric network and accuracy estimations of the 
results obtained during the regional gravimetric survey 
are described. 

Today new information-measuring gravimetric 
systems, methods and tools of gravimetric measurements 
are being developed by the Ukrainian scientists of 
National Technical University of Ukraine “Igor Sikorsky 
Kyiv Polytechnic Institute”, Zhytomyr Polytechnic State 
University [3]. 

But there is no information in the literature regarding 
the mathematical model of BLG that is required for 
further computer modeling. In this regard, the analysis of 
the device, the study of the main errors affecting the 
measurement is an urgent task. 

The task of measuring gravity by ballistic methods is 
to measure length and time. This follows, for example, 
from the analysis of the dimension of acceleration. 
Therefore, the mathematical model should reveal the 
analytical relation of the path traveled by the test body 
with time and external influences. The most constructive 
approach would be to build a model in which, on the one 
hand, the free motion of the test body in the inertial 
coordinate system is considered, taking into account the 
vertical gradient of the gravity acceleration and the forces 
of resistance, and on the other, the law of motion of some 
coupled coordinate system is shifted under the influence 
of external inertial influences and holds the reference 
system of the gravimeter. 
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Considering all researches, it can be concluded that the 
current scientific and technical problem today is to 
improve the accuracy of measurement of the gravity 
acceleration. 

The purpose is to get a mathematical model of the new 
BLG and improve the measurement accuracy of the 
gravity acceleration. 

2 Suggestions and solutions  
Consideration of the free motion of a test body tilted 
vertically upwards in an inertial coordinate system is 
reduced to solving a nonlinear 2nd order differential 
equation of the following form: 

݉ ⋅ ݖ̈ = ݉ ⋅ (݃଴ + ߙ ⋅ (ݖ − ଵߛ ⋅ ݖ̇ − ଶߛ ⋅  ଶ, (1)(ݖ̇)

where m is the mass of the test body; z is the vertical 
coordinate; α is the vertical gradient; γ1, γ2 are the 
coefficients that determine the contribution of resistance 
forces proportional to the first and second degrees of 
speed of motion of the test body. 

Solving equation (1) by successive approximation 
using the Laplace transform and then decomposing it by 
z, leads to the following equation: 

(ݐ)ݖ = ݃଴ ⋅ ෍ܣ௡ ⋅ ,௡ݐ
∞

௡ୀ଴

 (2) 

where An is the set of coefficients (n = 0, 1, 2, ...) 
determined from the conditions of motion of the test body 
in the ballistic block relative to the reference system. 

This expression describes the motion of the test body 
in the inertial coordinate system. The coordinates of a test 
body in real-world measurements of the gravity 
acceleration is determined by the fixed coordinate system 
that exposed perturbation an inertial system are uniquely 
dependent on its coordinates in the connected system: 

ሜܴ і = ݎ̄ + ሜܴ , (3) 

where ሜܴ і – a radius vector of the test body in the inertial 
system; 

 a radius vector of the test body in the connected – ݎ̄
system; 

ሜܴ  – a radius vector that describes the offset of a 
connected system. 

Generally, the ballistic gravity meter is operated so 
that the sensitivity axis (in our case the z axis) is held 
vertically. Therefore, equation (3) can be simplified: 

(ݐ)ܵ = (ݐ)ݖ + ܴ௭(ݐ) (4) 

In this expression, the component S(t) describes the 
behavior of the test body in the inertial system, and 
component Rz(t) – the influence of external perturbations. 

Algorithms for measurements of the gravity 
acceleration using the described model are very diverse, 
both by the method of realization of free movement of the 
test mass and by methods of measuring the path and time. 

Depending on the method of realization of the free 
movement of the test body, all terrestrial methods of 
determining g can be divided into two groups 
- with asymmetrical free movement; 
- with symmetrical free movement. 

Using symmetric methods (both branches of the 
parabola in Fig. 1), the test body is tilted up, and the path 
and time measurements are made on the left and right 
branches of the trajectory. 

When using asymmetric methods (right branch of the 
parabola in Fig. 1), the test body moves freely (falls) in 
the vacuum. 

 z 
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Fig. 1. The flight path of the test body in ballistic gravimeter: 
С1 – С4 – observation levels; t1 – t4 – moments of end of 
measurement intervals; S1 – S4 – measurement intervals. 

These methods are distinguished by the relatively 
simple implementation of free movement and the absence 
of the need to apply impulse (shock) force when starting 
the test body, which depends on the height of the throw, 
which greatly improves the dynamic conditions of 
gravimeter [4, 5]. 

The advantages of symmetric methods include the 
possibility of virtually complete elimination of systematic 
errors (which is proportional to the first degree of speed 
of motion of the test body) with a relatively simple 
measurement algorithm, as well as the possibility of 
reducing the vertical dimensions of the device, because at 
the same height of the gravimeter is the total path traveled 
by the body in this case it will be big. However, at the 
moment of throw there is a pulse reactive force, which 
introduces an error in the measurement results. 

Now we will present the set and structure, calculate 
and evaluate the main errors of BLG. 

A further increase in accuracy is hampered by a 
number of circumstances, both of a fundamental (physical) 
and technological (economic) nature. Therefore, there is 
the question of optimal accuracy, which depends on many 
factors and is determined by limitations. These limitations 
need to be known so that, on the one hand, you can use all 
of the precise possibilities presented by the theory, and on 
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the other hand, do not make unsuccessful attempts to 
increase accuracy beyond what is possible. 

Let us analyze how practical considerations shape the 
conditions for the required accuracy of measurements in 
gravimetry. 

Let us take a slow (quasi-static) process. It is 
necessary with the given reliability β to obtain their value 
Δx(t) (Fig. 2), measuring the process x(t) over time τ. 

 х(t) 

∆х(t) 

х(t2) 

х(t1) 

0 t1 t t2 
τ 

 
Fig. 2. The dependence of the permissible error on the drift 
velocity of the measurement process: S(t) – change of learning 
parameter of process during observation τ. 

The magnitude measured by x(t) and the error δ(t) of 
BLG are related by the relation:  

Δ(ݐ)ݔ ≥ ߚ ⋅  (5) ,(ݐ)ߜ

where ߚ ≥ 1  is the number that characterizes the 
reliability of the measurement. 

Then the Lagrange theorem on the mean in the interval 
under consideration can be written as follows: 

௫(௧మ)ି௫(௧భ)
௧మି௧భ

= Δ௫(௧)
ఛ

= ௗ௫
ௗ௧

=  ,(ݐ)ܸ

whence, taking into account equation (5), we obtain: 

(ݐ)ߜ ≤ ߬ ⋅
(ݐ)ܸ
ߚ

 (6) 

From equation (6) it follows that in the case of 
measurements of slowly changing processes, in addition 
to trivial to the accuracy of the measuring instrument, the 
requirements are also not completely obvious 
(measurement triviality is contained in the fact that the 
error of the device δ(t) must be smaller the more reliable 
the result is): 

1) the error value of the instrument must change over 
time if the process speed ܸ(ݐ) is variable; 

2) the value of the error of the instrument must be less 
than the smaller time interval τ spent to detect changes ΔS. 

Based on equation (6), we determine the maximum 
permissible value of δ(t). 

If τ = 0,1; β = 1; V= 1 μGal then ߜ = ଴,ଵ⋅ଵ
ଵ

= 0,1 μGal 
or in relative terms δ/g0 = 1·10-10. 

Such an error in the measurement of the gravity 
acceleration is currently needed to solve some geological 
problems [6]. Approximately the same accuracy order is 

required by an exemplary gravimeter for calibration of 
accelerometers. 

But this accuracy, at this point in time, is close to the 
limits recognized by some instrumental and fundamental 
limitations. 

As is known, the error of the laser interferometer, 
which is a device for reproducing a unit of length, has a 
significant effect on the error of the gravimeter. Let us 
define one of the errors of the interferometer - the 
diffraction error caused by the limited aperture of the light 
beam: 

Δ݃
݃
≈ 0,1 ⋅ ൬

ߣ
݀
൰
ଶ

. 

At wave length λ=0,633 μm; beam diameter d≈2 mm:  
Δ݃
݃

= 0,1 ⋅ ቆ0,633 ⋅
10ି଺

2
⋅ 10ିଷቇ

ଶ

≈ 1,0017225 ⋅ 10ି଼. 

In modern gravimetry, the total interaction of 
gravitational obstacles, with the exception of the influence 
of the sun and the moon, is considered so small in 
comparison with the equilibrium of inertial forces that it 
can be neglected [7]. The very exclusion of the influence 
of inertial forces on the results of measuring the 
gravimeter is, at this point in time, one of the main 
difficulties in improving the accuracy of the 
determination of the gravity acceleration. 

When performing gravimetric measurements of 
higher accuracy, a number of systematic errors are taken 
into account by making appropriate corrections, such as 
light pressure corrections, first and second order vertical 
and horizontal gradients, vacuum resistance, etc. 

Although accurate accounting for these errors and 
corrections is now more difficult than measuring 
acceleration itself, it is fundamentally feasible. However, 
there are fundamental limitations that cannot be 
eliminated by any tools or technological means. These 
include the approximation of the set value of the speed of 
light, quantum-mechanical constraints, the limits of the 
accuracy of determining the acceleration gradients, 
fluctuations, etc. 

Limitations that impose quantum mechanical laws: 

(Δܧሜ )ଶ ⋅ (Δ̄ݐ)ଶ ≥ ℎଶ (7) 

This inequality imposes a restriction on the 
measurement of energy (velocity) of the body if it is to be 
measured at a precise time. As noted above, the 
acceleration g can be determined from the relation: 

݃ =
ܸ − ଴ܸ

ݐ − ଴ݐ
. 

Find the variance of the gravity acceleration: 

ܦ = {݃}ଶܯ =
݃ଶ

ݐ) − ଴)ଶݐ ∙
[(Δ̄ݐ)ଶ + (Δ̄ݐ଴)ଶ] + 

                         + ଵ
(௧ି௧బ)మ

∙ [(Δ ሜܸ )ଶ + (Δ ሜܸ଴)ଶ], (8) 
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where (Δ̄ݐ)ଶ  and (Δ̄ݐ଴)ଶ  – the variance (uncertainty) of 
the end and start points of time; (Δ ሜܸ )ଶ  and (Δ ሜܸ଴)ଶ  – 
dispersions of the finite and initial velocities of the free-
fall body. 

Rewrite equation (8) using equation (7): 

ܦ =
݃ଶ

ݐ) − ଴)ଶݐ ∙
[(Δ̄ݐ)ଶ + (Δ̄ݐ଴)ଶ] + 

                    + ௛మ

௠మ(௧ି௧బ)మ
∙ ቂ ଵ
௏మ(Δ௧ሜ)మ

+ ଵ
௏బమ(Δ௧ሜబ)మ

ቃ, (9) 

Investigating equation (9) for the extremum, let us 
determine (Δ̄ݐ)ଶ  and (Δ̄ݐ଴)ଶ , that correspond to the 
minimum D 

(Δ̄ݐ)ଶ = ℎ
௠௏௚

 and (Δ̄ݐ଴)ଶ = ℎ
௠௏బ௚

 . 

So, we see that measuring of the gravity acceleration 
more accurately than 10-9 is impossible in principle due to 
quantum mechanical constraints, as well as fluctuations in 
length and time measures. 

After further analysis of the literature, it can be seen 
that the error caused by the linear drift of the scale factor 
of the BLG is Δl = 0.002". 

The error value is insignificant, so it is possible to 
neglect such a linear drift of the scale factor. 

The error from the portable (relatively BLG) angular 
velocity of the Earth rotation is determined by the formula: 

Δா =
߱௭
݇

, 

where k is the transmission coefficient of BLG, ωz. is the 
vertical component of the portable angular velocity of the 
Earth rotation. 

Note that the vertical component of the portable 
angular velocity of the Earth rotation is: 

߱௭ = ߱ா ݊݅ݏ ߶ 

Find the numerical value Δா  for such parameters 
݇ = 5 ⋅ 10ିଷ kg ⋅ m,  ߱ா = 7,29 ⋅ 10ିହ sିଵ. 

The maximum value of the term ఠಶ ௦௜௡థ
௞

 

corresponding to φ = 90 ° is 1,46·10-8 rad. That is, the 
error value Δா is small and can also be neglected. 

The possibility of increasing the accuracy and speed 
of a ballistic gravimeter by determining the influence of 
the deviation of the gravity axis of the gravimeter from 
the local vertical direction by using digital video has been 
investigated [8]. 

The problem is solved by the fact that in the already 
existing gravimetric system with high-precision 
alignment of the axis of gravity of the gravimeter is 
additionally introduced video camera 5, the processor of 
linear approximation of the label 6, the reflecting element 
7, the photoelectric autocollimator 8, and the body of the 
gravimeter 1 is plotted , the direction of which coincides 
with the direction of the axis of gravity of the gravimeter 
1, and the label is optically connected to the input of the 
camcorder 5, the output of which is connected to the input 
of the processor 6 linear approximation of the label, the 
output of which is connected to the first input of the digital 

computer 3, the second input of which is connected to the 
output of the photoelectric autocollimator 8, the input of 
which is optically connected to the reflecting element 7, 
which is attached to the housing gravimeter 1 (Fig. 3). 

 
1 

2 

7 

5 

8 

6 

3 

2 
1 

g


  

z 

0 

4 

 

Fig. 3. Schematic diagram of a gravimetric system with high 
precision alignment of the axis of sensitivity of the gravimeter. 

High-precision alignment of the axis of sensitivity of 
the gravimeter in three-dimensional space is ensured by 
the high-precision exposure in the three-dimensional 
space of the position of the plane corresponding to the 
surface of the reflecting element. Moreover, the mark and 
the reflecting element are fixed on the body of the 
gravimeter so that the direction of the mark coincides with 
the direction of the axis of sensitivity of the gravimeter, 
and the surface plane of the reflecting element was 
parallel to that axis of sensitivity [9]. 

The photoelectric autocollimator and camcorder are 
also pre-oriented in three-dimensional space so that their 
optical axes are perpendicular to the local vertical 
direction. With the help of a photoelectric auto-collimator, 
the deviation of the surface plane of the reflecting element 
from the position when it is perpendicular to the optical 
axis of the auto-collimator is estimated. A signal 
proportional to the degree of this mismatch is fed to the 
computer. The computer manages the spatial position of 
the platform in such a way so to eliminate this mismatch. 

The result is an arrangement of the axis of sensitivity 
of the gravimeter in a vertical plane that is perpendicular 
to the optical axis of the photoelectric autocollimator and 
in which the direction of the local vertical is located. 

However, the gravity axis of the gravimeter may be 
located in the specified vertical plane, but deviate some 
angle from the direction of the local vertical. This 
deviation can be determined by the tag, camcorder, and 
linear tag approximation processor. With the help of a 
digital computer that manages the spatial position of the 
platform, this deviation can be eliminated. 

The result is a highly accurate alignment of the gravity 
axis of the gravimeter in three-dimensional space and, 
accordingly, its high-precision coincidence with the 
direction of the local vertical and the full vector of gravity 
acceleration. 

Thus, in the gravimetric system, the accuracy of 
measuring the acceleration of the force of gravity is 
significantly increased. 
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3 Simulations 
The problem of investigating the influence of disturbance 
action parameters and some own BLG parameters on the 
work with the help of a computer is solved. 

We use the equation of motion BLG, writing it in the 
form: 

ߙ̈ + 2݊]ߙ̇ − ܮ ݐ߱)݊݅ݏ + [(ߝ + ߱଴
ଶߙ = 

= ܰ ߱݊݅ݏ  (10) ,ݐ

where ܮ = ௖భ′

ுమ
௕ݓ݈݉ ,  ܰ = ௠௟௞భ

ுమ
௔ݓ  – vibration 

parameters. 
Given (ݐ)ܯ = 2݊ − ܮ ݐ߱)݊݅ݏ + ,(ߝ (ݐ)ܦ = ߱଴

ଶ, then 

ߙ̈ + ߙ̇ ⋅ (ݐ)ܯ + (ݐ)ܦ ⋅ ߙ = 0, (11) 

where (ݐ)ܯ and (ݐ)ܦ are T-periodic functions, ̇(ݐ)ܯ 
and ܦ

.
 .assume integrated piecewise-continuous (ݐ)

The equation of the form (11) can be reduced to a 
similar one without changing the characteristic indices, 
where (ݐ)ܯ =  .ݐݏ݊݋ܿ

න ଵݐ݀(ଵݐ)ܯ = ℵݐ + ,(ݐ)ଵܯ
௧

଴
 

where 

ℵ = 2݊; (ଵݐ)ܯ  = න (ଵݐ)ܯ] − ℵ]
௧

଴
ݐ݀ =

ܮ
߱
ݐ߱)ݏ݋ܿ +  ,(ߝ

and ܯଵ(ݐ) is T-periodic function. 
Replacing 

ߙ = ݁ି
ଵ
ଶெభ(௧)ݔ = ݁ି

ଵ
ଶ
௅
ఠ ௖௢௦(ఠ௧ାఌ)(12) ,ݔ 

we get 

ݔ̈ + ݔ2݊̇ + ݔ(ݐ)ܨ = 0, (13) 
where 

(ݐ)ܨ = (ݐ)ܦ −
1
4
(ݐ)ଶܯ −

1
2
(ݐ)ܯ̇ +

1
4

ℵଶ = 
                   = ߱଴

ଶ + ଴ߥ ݐ߱)݊݅ݏ + ߝ +  (14) ,(଼ߪ

where ଼ߪ = ݃ݐܿݎܽ ఠ
ଶ௡

଴ߥ  , = ௅ඥఠ ାସ௡మ

ଶ
. 

Given (5.1) and (5.5), expression (5.4) can be written 
as 

ݔ̈ + ݔ2݊̇ + [߱଴
ଶ + ଴ߥ ݐ߱)݊݅ݏ + ߝ + ݔ[(଼ߪ = ܰ ߱݊݅ݏ ݐ

 (15) 

or, taking into account the real BLG parameters: 

ݔ̈ + ݔ଴̇߱ߦ2 + (߱଴
ଶ + ௕ݓଵߥ ߱݊݅ݏ ݔ(ݐ = ௔ݓ0,625 ߱݊݅ݏ ,ݐ

 (16) 

where ߥଵ = ఔబ
௪್

. 
Therefore, the BLG motion equation (10) is 

transformed into one equation (16), which is convenient 
for computer simulation. The equation obtained is a 
Mathieu-Hill equation [10-12]. 

The graphs of some functional dependences for certain 
values ݓ௔ , ௕ݓ , as well as the values of the damping 
coefficient , are shown in Fig. 4, 5, 6. 

 

Fig. 4. Graphs of change of output signal for different values 
߱. 

 

Fig. 5. Graphs of change of the output signal (ݐ)ݔ for different 
values of the damping factor . 

 

Fig. 6. Graphs of output signal (ݐ)ݔ changes for different 
values ݓ௔ ,  .௕ݓ

The graphs show that: 
– at perturbation frequency  = 0 = 2,5 s-1 the main 

resonance occurs, the most dangerous for the BLG; 
– at perturbation frequency  = /2= 1,25 s-1, 

 = /3 = 0,83 s-1 the output signal is not distorted (sub 
harmonic oscillations are set); 
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– at perturbation frequencies  = 20 = 5 s-1, 
 = 30 = 7,5 s-1 the output signal is distorted (beating is 
set); 

– increasing the amplitudes of horizontal accelerations 
does not affect the amplitude of the forced oscillations of 
the BLG (ݐ)ݔ; 

– the amplitudes of the forced oscillations along the 
axis of the BLG sensitivity are directly proportional to the 
amplitudes of the perturbing vibration accelerations along 
the axis of the BLG sensitivity. 

In order to compare the above information, the results 
of modeling the equations of motion of BG on the 
computer are summarized in Table 1. 

Table 1. The amplitudes of the steady forced oscillations of the 
BLG. 

, s-1 , rad 
0,83 
1,25 
2,5 
5,0 
7,5 

0,22 10-7 

0,65 10-7 

1,86 10-6 

0,93 10-6 

4,7 10-7 
 

Comparing the amplitudes of the steady forced 
oscillations of the BLG at  3, 2, 
2, 3;  = 1; ݓ௔ =  ௕= 1 m/s2, calculated inݓ
accordance with expression (12) (Table 1), it is seen that 
the amplitudes of the steady forced oscillations of the 
BLG are greatest, provided that the frequency of the 
natural oscillations of the BLG and the disturbing 
influence are equal. 

Digital simulation of the effect of perturbation 
parameters on the BLG, as well as the eigen parameters, 
confirmed the main advantage of the BLG over the known 
gravimeters – its higher accuracy (mean square error of 
0,1 μGal). 

4 Conclusions 
A refined mathematical model of the new BLG was 
obtained. The composition and structure of the main 
errors of the BLG are given. The main errors of the BLG 
are calculated and estimated. The computer simulation of 
BLG behavior for the most unfavorable resonance modes 
for different ratios of disturbing factors and intrinsic BLG 
parameters is performed. The conclusions made in the 
analytical study of the work of BLG are confirmed: the 
most dangerous from the point of view of resonance 
occurrence is only the case of coincidence of perturbation 
frequency with the frequency of natural BLG oscillations. 
As the damping factor increases, the resonance disappears. 
The main advantage of BLG over the known gravimeters 
was confirmed – its greater accuracy (mean square error 
of 0.1 μGal). It is proposed to use digital video in the new 
BLG as a carrier of measurement information. This 
extends the functionality and also significantly improves 
the accuracy of measurements of the gravity acceleration. 
This reflects the modern engineering and technological 
solutions of the information technology era in the 
sustainable development of society. 
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