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Abstract. The article works out the structure of the relationship between 

the managerial lev els of the food enterprise, which is developed taking in-

to account the use of robust control systems in the abnormal mode and sys-

tems of repair of heat power. To optimize renewable energy systems to the 

existing range of technological equipment of the bakery, a cogeneration 

unit is installed, due to its ability to generate and consume both heat and 

electricity. Also it is shown that the emergence of an abnormal situation at 

the electrotechnological complex of food production leads to a significant 

change in the transfer coefficients of the object over the direct and cross-

channel channels, which will lead to loss of stability of the closed control 

system. Synthesized structure robust control system which has roughness 

properties and minimal sensitivity to parametric and structural uncertain-

ties facility in case of emergency situations and elected its optimization cri-

terion. The basic properties of the electrotechnological complexes of food 

industries are analyzed and on the example of the baking furnace the robust 

control system synthesis and renewable energy systems are shown. A 

comparison of the characteristics of the control system with local and ro-

bust controllers has shown that a robust controller system has better robust 

properties in case of emergency situations. 

1 Introduction 

Systems of automated control of the food industry electrotechnological objects at the regu-

lar mode operate according to the criterion defined by the technological regulations [1], this 

may be an integral quadratic criterion, minimization of the time of regulation, etc. In this 

case, the calculation of control device configuration parameters is usually carried out for a 

linear model with constant coefficients taking into account the stability of the system. At 
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the moment of system transition into abnormal mode, the structural and parametric uncer-

tainty of the system significantly increases, and the control system may lose its stability. 

In abnormal mode, the technological process operates under conditions of significant 

uncertainty [2], with only a few of them can be calculated numerically. All uncertainties in 

the design of the control system can be divided into several types: 

- signal uncertainties (external); 

- parametric and structural uncertainties of the object model (internal). 

When describing the mathematical model of object the uncertainties mast be described 

by a certain class of uncertainties. Also, when designing the control system of the techno-

logical object the uncertainties are arised in the mathematical description of the control 

criterion that is following from the control purpose (uncertainty of purpose) and the calcula-

tion of the control device. In addition, when operating a designed control system, there are 

additional errors that lead to operational uncertainties, namely: the errors of primary and 

secondary transducers; errors of the digital converters of the control device, errors of com-

munication lines of the control system. These operational uncertainties are went  into the 

precision class of the respective device, and their total error can be calculated as the sum of 

dispersion of the respective devices. In order to ensure the stability of the system, it is pro-

posed to use robust control systems in the abnormal mode. 

2 Problem statement 

Robust theory from the outset was created as a theory of designing control systems in the 

presence of perturbations, about which the developer has virtually no information except 

the assumption of their limited. Therefore, control algorithms obtained on the basis of this 

theory are more universal than those obtained without taking into account the presence of 

perturbations according to different criteria [3, 4]. 

A characteristic feature of robust systems is that additional information is not used in 

the process of their operation [5]. This means that the regulator in such system must ensure 

performance of its work with the given properties throughout the entire work period. For 

the overall evaluation of the control system, the sensitivity index is also used: the depend-

ence of the control system dynamic properties  on any deviations of its parameters and 

characteristics from the values taken as the initial or calculated. 

In robust theory, the mathematical model of the control object is presented as a class of 

uncertainty [3], for example, widespread models with structural dynamic uncertainty of the 

electrotechnical complex is 

   0( ) ( ) ( ), ( ) 1,I s W s G s s 
    (1) 

where G0(s) – is transfer function of the nominal object, WΔ(s) –is weight transfer function 

that determines the scale of uncertainty and the frequency range in which it operates; Δ(s) – 

is transfer function of structural uncertainty. In the general case, all transfer functions in (1) 

are matrix. 

Today, the theory of robust optimal control can be divided into the following directions 

[3-9]: Loop Shaping synthesis, "2-Riccati" approach, μ-Synthesis Approach, LMI, l1-
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theory. Another approach that came about ten years ago within the framework of the H∞-

theory is the nonsmooth synthesis method [4, 5]. This method is based on the numerical 

optimization of non-smooth criteria, in particular the H∞-norm of a closed system or other 

system characteristics. In contrast to the above analytical methods, here the structure of the 

controller is given by the designer, and the parameters are determined by optimization. 

Thus, within the framework of a robust theory, in order for the system to have robust 

properties, the H∞ criterion is chosen, and the setting of a robust regulator, such as a tradi-

tional PI, is calculated using the nonsmooth multy-directional search. The advantages of 

such systems are unquestionable - the designer of the control system can personally choose 

any structure of the regulator and the calculated regulator has the properties of robustness, 

since it is synthesized by the H∞ criterion. 

3 Materials and methods 

The criterion for functioning of an electrotechnical complex is given by the production 

level that is the level of management of production operations (MOM / MES), which is 

formed on the basis of economic criteria and limitations of the level of business planning 

and logistics (ERP). In fig. 1 shows a simplified scheme of the relationship of managerial 

levels of the food business, developed on the basis of the factor-target model of the electro-

technological complex (ETC) of food industries [10] and taking into account the use of 

abnormal modes of robust control systems. The management of production operations is the 

actions of the 3rd level of the production activity of the enterprise, which coordinate the 

regime indicators of the technological process, the work of personnel, equipment and the 

use of materials in production (ISA-95). 

Each production operation can be presented as an optimization task, the solution of 

which are given technological variables, which ensure the optimal functioning of the tech-

nological complex. Optimal technological variables, such as temperature, pH, flow, etc. are 

transmitted to the lower level - automatic control of ETC as the specified values of dynamic 

optimization of this level. To minimize the effects between the subsystems of the horizontal 

level of automatic control of the ETC, the use of robust algorithms for the synthesis of the 

control device is effective. The latter provide coarse control of technological objects in 

conditions of significant uncertainty, thereby minimizing the influence between subsystems 

of the electrotechnological complex [11]. 

To optimize renewable energy systems to the existing range of technological equipment 

of the bakery, a cogeneration unit is installed, that is caused by the possibility of generation 

and consumption, both heat and electricity. The task of such equipment is the restoration of 

heat energy from the flue gas for its transfer to the boiler plant and the generation of eco-

nomically feasible volumes of electricity for industrial consumers of such energy resources. 
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Fig. 1. Generalized universal structure of the relationship management levels of the food enterprise. 

This approach meets the concept of distributed generation ("Smart Grid" -technology), 

which allows you to count on the following effects: 

1. Increase of consumer reliability; 

2. Energy security - by expanding the types of fuel, attracting local energy resources; 

3. Optimize load control and backup;  

4. Ensuring the function of flexibility of "smart networks" (in terms of generation); 

5. Energy efficiency - optimization of load curve, reduction of losses in the process of 

transmission / distribution of energy, expansion of cogeneration, etc.; 

6. Reducing the environmental load (CO2 emissions). 

The proposed solution can be attributed to the "Smart Grid" technology with the follow-

ing innovative properties that meet the new needs of electrical engineering complexes and 

systems, among which the following can be distinguished: 
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  An active two-directional scheme of interaction in a real-time information exchange 

between elements and participants of the network, from power generators to end-use power 

devices. 

  Coverage of the whole technological chain of the electric power system, from energy 

producers (as central, NPP, CHP, HES, and autonomous - cogeneration plant). 

  Support of information exchange in the "Smart Grid" provides for the use of digital 

communication networks and data interfaces. 

In the first stage, for the simulation and optimization of renewable energy systems and 

the creation of a robust automated control system by an electrotechnological complex, it is 

necessary to obtain linear mathematical models of thermal processes. 

To obtain a mathematical model of the heat exchange part of the boiler house on the ba-

sis of thermal and material balances, one can adopt the approach wrote in [12, 13]. 

After bringing the mathematical model to the standard form, we obtain: 
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1 11 11 10 12 1 13 1

21
2 21 21 20 22 2 23 2

1
3 1 31 1 32 10

1
4 1 41 2 42 20

п

п

п
п п

п
п п

d
T K K G K

d

d
T K K G K

d

d
T K G K

d

d
T K G K

d


       


       

 


     
 



     
 

 

where constant time 
iT  and transfer rates ijk   are calculated by the formulas:  

0

1
1

1

в

в

V C
T

С G


 ;       

0

1 1 1
11

1

( )в

в

G C k F
K

С G


 ; 

 
0 0

0

10 11

12

1

в в

в

C C
K

С G

  
 ;     

0

1 1
13

1в

k F
K

С G
 ; 

0

2
2

2

в

в

V C
T

С G


 ;      

0

2 2 2
21

2

( )в

в

G C k F
K

С G


 ; 

 
0 0

0

20 21

22

2

в в

в

C C
K

С G

  
 ;     

0

2 2
23

2в

k F
K

С G
 ; 

3
3

1 1

пV C
T

k F
 ;         1

31

1 1

r
K

k F
 ; 

5

E3S Web of Conferences 154, 04006 (2020) 
ICoRES 2019

https://doi.org/10.1051/e3sconf/202015404006



 

32 1K  ;          4
4

2 2

пV C
T

k F
 ; 

2
41

2 2

r
K

k F
 ;          

42 1K  . 

where 
пі  is deviation of the temperature of the heating steam in the i-th heat exchanger; 

1G  is deviation of the flow of water, consuming to production; 
2G  is deviation of the 

flow of water, consuming to the household needs of the enterprise; 
10  is deviation of 

water temperature, consuming to production at the entrance to the heater; 
11  is deviation 

of water temperature, which goes into production after the heater; 
20  is deviation of wa-

ter temperature, consuming to the household needs of the entrance to the heater; 
21  is 

deviation of water temperature, consuming to the household needs of the company at the 

outlet of the heater. 

The values of the transfer coefficients of the mathematical model of the heat exchanger 

part of the boiler house were calculated for typical operating modes taking into account the 

design features of heat exchangers installed in the boiler-house of the bakery (Fig. 2, 3). 

 

Fig. 2. The block diagram of the system of automated control of the water temperature, consuming to 

production. 
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Fig. 3. The block diagram of the system of automated control of the water temperature, consuming to 

household needs. 

The values of the coefficients of heat transfer for the 1st and 2nd heat exchangers were 

determined depending on the material from which the heat exchangers were made: austenit-

ic steel with high corrosion resistance. 

The heat transfer coefficient of austenitic steel for a single-layer flat wall is determined 

by the formula: 

 
1 1

1 1
г ст х

стг х

k
R R R 

 
   

  

, 

where 
г  and 

х  is the coefficient of heat transfer from the hot coolant to the wall and 

from the wall to the cold coolant, respectively;   and   is thickness and coefficient of 

thermal conductivity of the wall; 
гR
 is thermal resistance of heat transfer from the side of 

the hot coolant; 
стR  is thermal resistance of the thermal conductivity (walls); 

хR
 is ther-

mal resistance of heat transfer from the cold coolant. 

To maintain the required temperature regime of the boiler house we use PI regulators, 

the equations of which have the form: 

1 1 11 1 11

0

( )
t

P IU t k k dt    , 
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2 2 21 2 21

0

( )
t

P IU t k k dt    . 

The optimal settings of the regulators were determined by the method of non-vanishing 

oscillations: 0.45reg krК К  , 1.2i krТ T , where ,kr krК T  is the critical values of the 

transmission coefficient and the period of fluctuations in the system. Below are transient 

processes for controlling the water temperature at the outlet from the heat exchanger when 

the task and perturbation are changed (Fig. 4 - 7). 

As a result of the simulation, a system of automatic temperature control in the boiler 

house has been obtained, which allows one to determine: whether the amount of renewable 

thermal energy produced by the cogeneration plant is sufficient for the normal operation of 

the boiler room. 

Based on the previous results, a robust control system and advanced dynamic mathe-

matical models are used to evaluate the temperature operating conditions of the baking 

oven and the boiler house. 

The construction of an effective control system is preceded by the construction of an 

adequate mathematical model of the object. The advantage of robust systems is the use of a 

simple, in particular, linear mathematical model of an object, whereas non-stationary, non-

linear, and other factors, which lead to a rejection of the functioning of the system from the 

nominal state, are taken into account in the description of various types of uncertainties. 

 

 

Fig.4. Transitional process of water temperature regulation, which goes into production when the task 

is changed (
0

11_ pred 60 С  ). 
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Fig.5. Transitional process of regulating the temperature of water entering the production relative to 

the action of perturbation (changes in the deviation of water temperature at the entrance to the heater). 

 

Fig.6. Transitional process of regulating the temperature of water, consuming to the household needs 

of the enterprise when changing the task (
0

21_ pred 75 С  ). 
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Fig. 7. Transitional process of temperature control of water, consuming to the household needs of the 

enterprise relative to the effect of perturbation (changes in the deviation of water temperature at the 

entrance to the heater). 

In general, the mathematical model of the control object can be written as 

 ( ),Fx u,z  (2) 

where x is the coordinate vector of the state of the system, dimension n; u is the vector of 

controls, dimension m; z is the vector of perturbations, dimension l; F is the operator or 

function (vector-function) of the object mathematical model. The operator F can be given in 

different ways: using formulas, tables, graphs. 

In practice, when we are designing a control system for technological processes of food 

businesses, we do not use nonlinear models, and by linearization we move to a linear model 

of an object in the form of transfer functions: 

 ( ) ,sx G u  (3) 

and, as a rule, in a scalar form. Transfer function of the control object is obtained by to 

conducting an active experiment when feeding to the control input of the periodic (step, 

pulse) or periodic signals (sinusoidal, pseudobinarny etc.). In this case, the structure of the 

transfer function of the object is chosen according to a priori information. If information 

about the structure (3) we do not have, then, as a rule, we take an aperiodic link with a de-

lay for an object with self-alignment, or an integral link with a delay for an object without 
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self-alignment. Note that without identifying an object's mathematical model, the regulator 

may not be able to adjust, or it will take a long time. 

Next, the linear structure regulator is constructed according to one of the engineering 

criteria of the quality of the transients, after which the stability reserve of the control system 

is adjusted. At the last stage, the designer "desensitizes" the control system, usually by re-

ducing the transmission coefficient of the proportional component PI or other controller. In 

summary, the design of the control system is far from the optimal mode of operation. 

One of the effective ways to ensure the robust properties of the system with one input - 

one output is the use of the theory of sensitivity, as well as the loop shaping approach based 

on this theory. This is a generalized classical method that uses the logarithmic amplitude-

frequency characteristics of the open system (Bode diagram). 

Within the framework of this approach [3] we consider a system described by three 

transfer functions: 

 e=S(s)r, u=R(s)r, y=T(s)r, (4) 

where S(s) is the transfer function of the sensitivity of the system, T(s) is a function of ad-

ditional sensitivity and additional transfer functions L(s) and R(s), which are determined by 

the formulas: 

L(s)=G(s)K(s), S(s)=[I+L(s)]-1, R(s)=K(s)[I+L(s)]-1, 

 T(s)=L(s)[I+L(s)]-1. (5) 

The indicated three transfer functions (4), (5) determine the quality and robustness of 

the multidimensional system. In particular, the function S(s) describes the change of the 

closed system to small parametric or structural deviations of the object. In addition, this 

same function determines the qualitative measure of tracking the signal of the task r(t), 

which depends both on the signal r(t) and on the measurement of the tracking error e(t). For 

example, if a sinusoidal signal with amplitude ≤1 arrives at the input of a task, and it is 

necessary to obtain e (t) with amplitude ≤ε, then the tracking quality can be expressed as: 

 1( ) або ( ) ( ) 1,ss s s
 
  S W S  (6) 

where W1 (s) = 1/ε is the weight function, which in the general case may depend on the 

frequency. 

In accordance with this theory, the size of the largest destabilizing additive and multi-

plicative uncertainty can also be calculated numerically: 
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where ( )  is the largest singular value of the corresponding transfer matrix. Similarly, for 

S(s) we determine the weight functions for the matrices R(s) and T(s). 

In non-standard mode, the technological process is subject to destabilizing internal in-

fluences, which appear in the mathematical model of the object as parametric and multipli-

cative uncertainties. Thus, by the criterion of optimization you can choose the expression: 

 
1

( , )
2

( ) ( )
min,

( ) ( ) s

s s

s s



K θ

W S

W T
 (8) 

where  K , s  is the transfer function of the regulator with the parameter vector θ. The 

structure of the regulator  K , s  can be selected independently based on a priori data on 

the operation of the technological object and the simplicity of implementation. Note that 

criterion (8) is a kind of so-called "weighted mixed sensitivity" tasks whose solution is 

reduced to a "2-Rikkat" -flow without specifying the structure of the regulator. However, in 

this paper, we propose to solve the optimization problem (8) by the method of non-smooth 

synthesis, thereby fixing the structure  K , s . 

Thus, we will formulate the main stages of constructing a robust controller: 

- construction of mathematical model of technological process; 

- determination of management criterion and weight functions; 

- experimental modeling of the control system; 

- implementation of the received regulator on a technical basis. 

After analyzing the peculiarities of the technological processes of food production, we 

can conclude that the food enterprises are complex electrotechnical complexes that have the 

following main features as objects of management: 

- the components of the electrotechnological systems of food production have the same 

structure of the electrical equipment and energy supply systems of the enterprise, and differ 

only in technological equipment; 

- the structure of food production is hierarchical (products of one production process are 

the raw material for other production processes). 

- high dimension of data, high degree of uncertainty of work and concealment of quality 

indices of raw materials and semi-finished products. 

- multipurpose object behavior, when the priority of the objectives of each subsystem 

depends on the overall situation on the control object. 

A typical representative of the ETC of food production is the bakery, so let's give an ex-

ample of the development of a robust control system in the case of a non-emergency situa-

tion for a bakery oven. 
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The baking oven can be represented as a multi-parameter monoelement object, which is 

characterized by a number of technological and thermal engineering variables. The baking 

oven is being divided into separate, characteristic structural features, sections, each of 

which is considered as a linear one-dimensional object with lumped parameters and its 

input and output actions. 

The mathematical model of a baking oven in the space of state variables has the form: 

 1 2

( )
( ) ( ) ( ),

( ) ( );

d t
t t t

dt

t t
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Notation: fG  is fuel consumption, supplied to the furnace, kg / h; 
recG  is consumption 

of recirculation gases entering the furnace, m3; 
rec  is temperature of recirculation gases, 

0С; fg  is temperature of flue gases, 0С; Gx is steam consumption for humidification, kg / h; 

Gn is power of the oven, kg / h; Рn is partial vapor pressure in the chamber baking kPa; θс is 

temperature in the baking chamber, 0С; W is humidity in the baking chamber, %. 

The coefficients of the mathematical model for the real object (11) are calculated ac-

cording to the static parameters of the process, which depend on the structural features of 

the apparatus and the heat capacity of the substances and walls, which, in assumptions, 

were accepted as lumped and constant: 
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We note that a mathematical model for the synthesis of a robust regulator can also be 

obtained by an experimental connection by the aperiodic or periodic input actions for each 

channel. In this case, the mathematical model is obtained in the form of elementary transfer 

functions, such as an aperiodic or integral link of the first order with a delay, an aperiodic 

or integral link of the second order, etc. Regardless of how the mathematical model of an 

object is obtained, it can easily be transformed into a space of state variables, and then we 

synthesize a robust controller. Because the processes have large time constants, the control 

device, synthesized by continuous synthesis algorithms, will make a minor mistake in the 

system. On the other hand, as it is known, the discrete mode of operation of the control 

device makes a delay in the control system, but the robust system properties take into ac-

count the inaccuracies of the object model. 

Consider changing the behavior of the object in non-regular mode. In fig. 8 shows 

changes in the transient response when introducing parametric and multiplicative uncertain-

ties in an object. As we see, transmission coefficients for direct channels vary about 2 

times, and for cross-links vary and more. Such an increase in transmission coefficients will 

result in loss of stability of the closed system. 

 

Fig. 8. Curves series of the object’s transient response for control channels. 

We synthesize management system that consists of two PI regulators and works in nor-

mal mode. Аs the control criterion we will select the maximum perturbation filtration with 

a 450-degree stability reserve. In fig. 9 shows transient processes in a closed system when 
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the task and perturbation are changed (red line is a nominal object; the blue line is an object 

with random uncertainty). As you can see, when introducing uncertainties into the object 

control system has poor qualitative characteristics. 

In accordance with the above method, the robust parameters of the PID regulators and 

the static compensator according to criterion (8) were synthesized. The structural scheme of 

the received control system is shown in Fig. 10. For comparison parameters PID controller 

of two systems are shown in Table 1. 

 

Fig. 9. Curves series of transient processes in the local system relative to the change of task at random 

values of uncertainty. 

 

Fig. 10. Structural scheme of the robust control system. 
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Table 1. Parameters of controllers synthesized according to different criteria. 

 

In fig. 11 shows transient processes in a robust control system relative to the change of 

task. 

 

Fig. 11. Transition processes in the robust system relative to the change of task at random values of 

uncertainty. 

  

System 

Parameters of  controllers 

1
Kp + Ki

1

s
Kd

s Tf s


 
 

1 ( local ) 
PID1: Kp = 0.46, Ki = 0.57, Kd = 0.09, Tf = 0 

PID2:  Kp = 0.03, Ki = 0.21, Kd = 0.001, Tf = 0 

2 ( robust ) 

PID1: Kp = 0.50, Ki = 0.50, Kd = 0.06, Tf = 1 

PID2:   Kp = 0.5, Ki = 0.3, Kd =0.05, Tf = 1 

K: [   1     -0.2179     -0.2179      1   ] 
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Table 2. Comparative characteristics of systems with different controllers. 

controller ( )Т s


 ( )S s


 ( )R s


 

Local system 1.99 2.26 2.14 

Robust system 1.75 2.00 1.80 

Analyzing table 2 it can be concluded that the robust controller system has better robust 

properties, namely: the region of parametric and structural uncertainty in which the system 

remains broadly stabilized by 11%, 14% and 18%, respectively. 

From the analysis of the control signals in the systems with regard to the change in the 

task at nominal values of uncertainty (Fig. 12), the integral quadratic characteristics of each 

signal are determined: the resource of control on the first channel in the robust system in-

creased by 17%, but by the second channel, respectively, decreased twice (52%). The total 

integral quadratic indicator of control signals in the robust system has increased from 33.02 

units of control measurement2 to 36.76 units of control measurement2. 

Fig. 12. Control signals in nominal systems. 

  

17

E3S Web of Conferences 154, 04006 (2020) 
ICoRES 2019

https://doi.org/10.1051/e3sconf/202015404006



 

4 Conclusions 

In order to simplify the implementation of robust control systems by the electrotechnologi-

cal complex of food production in a non-regular mode, a generalized universal structure of 

the interconnection of managerial levels of the food enterprise with the consideration of 

renewable energy systems has been developed. 

A simulation of the system of automatic temperature control in the boiler house was car-

ried out to assess the boiler operation mode taking into account the amount of renewable 

thermal energy produced by the cogeneration unit. The optimization criterion is chosen and 

the structure of the robust control system is synthesized in the case of an unusual situation 

that has the properties of rudeness and minimal sensitivity to parametric and structural un-

certainties of the object. The simulation was carried out on an example of a baking oven, 

and the optimal parameters of a robust control system were obtained. Comparison of the 

characteristics of the control system with local and robust controllers showed that the robust 

controller system has better robust properties, namely the parametric and structural uncer-

tainty area in which the system remains broadly stabilized by 11%, 14% and 18%, respec-

tively. 

The improvement of this system is the development of a coordinating system control for 

robust subsystems of the electrotechnological complex. 
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