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Abstract. With the advancement of high-resolution three-dimensional X-ray imaging, it is now possible to 
directly calculate the curvature of the interface of two phases extracted from segmented CT images during 
two-phase flow experiments to derive capillary pressure. However, there is an inherent difficulty of this 
image-based curvature measurement: the use of voxelized image data for the calculation of curvature can 
cause significant errors. To address this, we first perform two-phase direct numerical simulations to obtain 
the oil and water phase distribution, the exact location of the interface, and local fluid pressure. We then 
investigate a method to compute curvature on the oil/water interface. The interface is defined in two ways. In 
one case the simulated interface which has a sub-resolution smoothness is used, while the other is a smoothed 
interface which is extracted from synthetic segmented data based on the simulated phase distribution. 
Computed mean curvature on these surfaces are compared with that obtained from the fluid pressure 
computed directly in the simulation. We discuss the accuracy of image-based curvature measurements for the 
calculation of capillary pressure and propose the best way to extract an accurate curvature measurement, 
quantifying the likely uncertainties. 

1 Introduction  

Capillary pressure, Pc, is a pressure discontinuity 
across the interface between oil and water, defined as Pc 
= Po−Pw, where Po and Pw are the pressures of oil and 
water phase, respectively. Traditionally, capillary 
pressure for oil/water systems has been measured in a 
laboratory using the porous plate method in which the 
pressure of each phase is measured using two external 
pressure transducers. Based on the Young-Laplace 
equation, capillary pressure locally is defined as: 

 mcP 2 , (1) 

where σ is the interfacial tension between two phases and 
κm is the mean curvature of the interface. 

With the advancement of high-resolution three-
dimensional X-ray imaging, it is now possible to directly 
measure the curvature of the interface extracted from 
segmented CT images during two-phase flow experiments 
to derive capillary pressure. Armstrong et al. [1] 
demonstrated this approach using synchrotron-based 
tomographic datasets of oil/water drainage and imbibition 
cycles on a bead pack structure [2]. They compared the 
capillary pressure obtained from curvature measurements 
with that obtained from pressure transducers. Fairly good 
agreement was obtained for imbibition, whereas the 
curvature measurement showed a systematically lower 
value than that obtained from the transducers for drainage 
cycles. Later, using the same dataset, Li et al. [3] 
presented that their proposed curvature measurement 

method improved the agreement with the transducer 
based capillary pressure. Using a similar curvature 
measurement method, Herring et al. [4] estimated the 
capillary pressure for a range of curvature between 0 and 
0.225 voxel-1 based on their air/water drainage and 
imbibition experiments on a Bentheimer sandstone. 
However, there is an inherent difficulty of this image-
based curvature measurement: the use of voxelized image 
data for the calculation of curvature can cause significant 
errors, resulting in a wide range of measured values, with 
some negative curvature values, which are not expected 
in a water-wet system. Hence, it is not clear how the 
distribution of measured curvature values represents the 
true range of local capillary pressure. 

We investigate the accuracy of curvature 
measurement on the basis of pore-by-pore comparison 
using direct numerical simulations of two-phase flow. The 
color-gradient lattice Boltzmann method is employed to 
generate an oil and water phase distribution in pore 
structures of a bead pack and Bentheimer sandstone. From 
the simulated phase distribution, synthetic segmented data 
is generated, then curvature computation on the interface 
extracted from this segmented data is performed by 
employing several smoothing methods. These curvature 
values are then compared with those obtained from the 
simulated local fluid pressure. We discuss the accuracy of 
image-based curvature measurements for the calculation 
of capillary pressure and suggest the best method with 
associated errors for capillary pressure estimation. 
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2 Methods 

2.1 The color-gradient lattice Boltzmann method 

The color-gradient LB model proposed by Halliday et 
al. [5] was used. Our LB model was constructed with a 
3D19Q lattice model which consists of a set of 19 discrete 
lattice velocity vectors, ei, in three-dimensional space. We 
defined particle distributions of two immiscible fluids, 
labeled red and blue, as fir and fib, respectively. The fluid 
density, ρr and ρb, and velocity, u, at position x and time t 
are obtained by: 

  tf
i

k
i

k ,x , (2) 
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f eu  , (3) 

where fi is the total particle distribution given by fi = fir+fib; 
ρ is the total fluid density given by ρ=ρr+ρb. The lattice 
Boltzmann equation for the total particle distribution is 
written as: 

       iiiii ttftttf   ,,, xxex , (4) 

where t denotes the lattice time step which was set to unity 
and Ωi and ϕi are the collision operator and the body force 
term, respectively. For the collision operator, we used the 
Multiple-relaxation-time (MRT) collision operator [6] 
expressed as: 

    eq
iijii ff  

,
1SMM , (5) 

where M and S are the transformation matrix and the 
diagonal relaxation matrix, respectively. fieq is the 
equilibrium distribution function which is obtained by a 
second order Taylor expansion of the Maxwell-
Boltzmann distribution with respect to the local fluid 
velocity. The location of the interface was tracked using a 
color function ρN defined by: 
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Using the color function, the interfacial tension between 
two fluids was computed as a spatially varying body 
force, F, based on the continuum surface force (CSF) 
model [7] given by: 

 N
2
1

F , (7) 

where σ is the interfacial tension and κ is the curvature of 
the interface. This spatially varying body force F was 
incorporated into the lattice Boltzmann equation through 
the body force term ϕi. For the MRT model, this was 
performed by transforming the forcing term proposed by 
Guo et al. [8] using the scheme presented in Yu and Fan 
[9]. After the application of the interfacial tension (F) to 
the particle distributions, the recoloring algorithm 
proposed by Latva-Kokko and Rothman [10]  applied to 
these distributions to ensure phase segregation and 

maintain the interface. This results in a slightly diffusive 
interface whose thickness is about 2 to 3 lattice units. 
Further details of our LB model can be found in Akai et 
al. [11, 12]. The only difference is that we used the MRT 
collision operator, while the single-relaxation-time (SRT) 
collision operator [13] was used in Akai et al. [11]. 

At solid-fluid boundary lattice nodes, a full-way 
bounce back boundary condition was implemented to 
achieve a non-slip boundary condition. In addition, the 
wettability of solid surface was modeled by specifying 
contact angles using the wetting boundary condition 
presented in Akai et al. [11]. This wetting boundary 
condition accurately assigns contact angles for 3D 
arbitrary geometries with smaller spurious currents 
compared to the widely-used fictitious density boundary 
condition [11]. 

2.2 Curvature computation on voxelized images 

There are mainly two approaches to compute 
curvature from voxelized data such as micro-CT images. 
One approach calculates curvatures from the gradient of 
3D float data (e.g., raw or processed grayscale data), 
while the other approach estimates curvature through the 
fitting of a quadratic form locally to a surface extracted 
from voxelized, segmented data [14]. We used the latter 
approach as this has been presented in previous studies 
[14, 1, 15, 4, 3, 16]. 

We started with three-phase segmented label data (oil, 
water and solid) obtained from raw grayscale CT images. 
Using the marching cubes algorithm [17], the oil/water 
interface was extracted from the label data. Since this 
surface had a staircase shape, it had to be smoothed before 
computing curvature. In this study, we compare three 
smoothing methods: Constrained Gaussian smoothing 
(CGS), Laplacian smoothing (LPS) and boundary 
preserving Gaussian smoothing (BPGS). CGS is applied 
when the surface is extracted using the marching cubes 
algorithm. A Gasussian kernel filter with different kernel 
sizes is applied to label data, then isosurface is extracted. 
In this process, the constraint to preserve the location of 
an original label is imposed. 

LPS [18] and BPGS [19] are applied after the 
extraction of the surface with the marching cubes 
algorithm. The extracted surface with a staircase shape is 
modeled as a triangulated surface. Then, the vertices of 
the triangle elements are moved with these smoothing 
methods. In LPS, the position of a vertex is moved to the 
average position of its neighboring vertices. BPGS also 
moves the position of a vertex based on the position of its 
neighboring vertices. A scale factor which determines the 
degree of the movement in one iteration is defined. Two 
consecutive smoothing steps with a positive and negative 
scaling factor are performed in one iteration. This 
smoothing produces a surface which preserves the 
original boundary without shrinkage [19]. The degree of 
the smoothing in LPS and BPGS is controlled by the 
number of iterations. In this study, CGS and BPGS were 
performed with commercial image processing software, 
Avizo, while LPS was performed with Paraview.  
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After the generation of a smoothed triangulated 
surface, the elemental triangles were fitted by a quadratic 
form: 
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Then, the principal curvature values and directions of 
principal curvature were obtained from the eigenvalues 
and eigenvectors of the fitted quadratic form in Eq. 8 [1]. 
Avizo was used to perform this computation. Users can 
choose the number of neighboring triangles to be used for 
the fitting at the center of a triangle. We used a fixed value 
of 4 neighbors in the following analyses. 

3 Results 

In section 3.1, we provide validation of our direct 
numerical simulations for different grid resolutions. Next, 
in section 3.2, using a single oil droplet test case, we 
investigate the accuracy of the curvature computation 
method described in section 2.2. Here, a smoothed 
interface which was extracted from synthetic segmented 
data based on the simulated phase distribution is used to 
compute curvature, then the resultant values are compared 
with those obtained from the simulated fluid pressure. 
Finally, in section 3.3, the same approach is applied to the 
simulated phase distributions in two realistically complex 
pore structures of a bead pack and Bentheimer sandstone. 

3.1 Validation of the two-phase lattice Boltzmann 
model 

To validate our two-phase lattice Boltzmann model 
and investigate its accuracy as a function of grid 
resolutions, the oil/water interface in a corner of triangular 
pore space was simulated. A 2D pore structure with an 
isosceles triangle shape as shown in Fig. 1 was used. Here, 
the length of Lx and Ly were set to 70 μm. R is the radius 
of curvature of the interface; θ is the contact angle; β is 
the half angle of the corner of the triangle, which is given 
by: tanβ=Lx/2Ly. This pore structure was modeled with 4 
grid sizes of Δ=1.0, 2.0, 3.5 and 5.0 μm.  

The identical density and viscosity of the water and oil 
phases were set to 1,000 kg/m3 and 1 mPa, respectively. 
The interfacial tension and contact angle were set to 18 
mN/m and 45°, respectively. Initially, the lower part of 
the pore structure was filled with oil to a specified oil 
saturation, while the other part at the top corner was filled 
with water. Then, simulations were performed for 50,000 
time steps until they reached equilibrium. 

In this pore geometry, the radius of curvature, R, can 
be analytically derived based on the geometrical 
relationship, which is given by: 
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where Sw is the water saturation and the other parameters 
are shown in Fig 1. This analytically derived radius of 
curvature was used to compare with the simulated radius 
of curvature obtained using the input contact angle of 
θ=45°. Based on the simulated fluid configurations, the 
exact location of the interface corresponding to ρN=0 (see 
Eq. 6) was extracted as shown in Fig. 2. Then, the radius 
of the curvature of this interface was obtained by fitting a 
circle to the interface, since in 2D in equilibrium the 
analytical shape of the interface is a part of a circle. Table 
1 shows the comparison between the radius of curvature 
obtained from the analytical solution and that obtained 
with a circle fit to the simulated interface for different grid 
sizes. The relative error in the radius of curvature is less 
than 3% for these grid resolutions. This suggests that good 
agreement in capillary pressure is also obtained since the 
capillary pressure is directly linked to the radius of 
curvature through Eq. 1.  

 
Fig. 1. A schematic of the isosceles triangle pore used for 
the simulations. 

Lx=70 μm

Ly=70 μm
β

R

θ

 
Fig. 2. Simulated fluid configurations for grid sizes of (a) 
Δ=1.0 µm, (b) Δ =2.0 µm, (c) Δ =3.5 µm and (d) Δ =5.0 
µm. Here, oil and water are shown in red and blue, while 
the exact location of the oil/water interface is shown by the 
white line.  
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3.2 Curvature of a single oil droplet in triangular pore 
space 

To investigate the curvature computation algorithm 
described in section 2.2, a simple 3D test case was 
performed. A cylindrical pore structure with the length of 
171.5 μm with an isosceles triangular cross-section as in 
the previous test case was used. This pore structure was 
modeled with a grid size of 3.5 μm. The same fluid 
properties and contact angle as in the previous section 
were used. Initially, oil was placed in the central region of 
the pore space as shown in Fig. 3a. Then, simulations were 
performed for 50,000 time steps until they formed a single 
oil droplet after equilibrium (Fig. 3b). 

 
Two types of the oil/water interface were prepared 

based on the simulation results:   a   “simulated   interface”  
and  a  “smoothed  interface”.  The  simulated  interface  was  
obtained by extracting the contour line of the color 
function ρN=0. This surface originally had a sub-
resolution smoothness. The other surface, the smoothed 
interface, was obtained from synthetic voxelized label 
data. The simulated distribution of the color function was 
segmented into label data with the threshold of ρN=0, then 
the oil/water interface was extracted using the marching 
cubes algorithm. This surface has a staircase shape due to 
the shape of a voxelized grid system. Therefore, it needs 
to be smoothed before computing curvature. As discussed 
in section 2.2, three smoothing methods were applied: 
Constrained Gaussian smoothing (CGS), Laplacian 
smoothing (LPS) and boundary preserving Gaussian 
smoothing (BPGS). The parameters used for the 
smoothing are summarized in Table 2. 

Based on the simulated fluid pressure, the capillary 
pressure was obtained using: 
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where Poavg and Pwavg are the average fluid pressure in the 
oil and water phases, respectively; No and Nw are the 
number of grid blocks having ρN>0.9 and ρN<−0.9, 
respectively; P is the simulated fluid pressure in each grid 
block. Here, to exclude the interface region, we computed 
an average pressure for each phase for |ρN|>0.9. Then, 
Pcsim was converted to the simulated mean curvature using 
Eq. 1. We refer to this mean curvature as the fluid pressure 
derived mean curvature, κmP. 

Fig. 4 shows the oil/water interface after smoothing, 
colored by computed mean curvature. For all of the 
smoothed surfaces, we see a variation in the computed 
mean curvature, although the correct mean curvature 
should give a uniform value as shown in the curvature 
computed on the simulated interface, Fig. 4(j), because 
the oil droplet is in capillary equilibrium. Furthermore, we 
see errors around the edge of the interface (close to the 
three-phase contact lines) for all of the smoothed 
interfaces, Fig. 4(a)~(i). Therefore, we decided to discard 
the data points whose distance from solid surface is fewer 
than 3 voxels. This 3 voxels distance cutoff was used for 
all of the following analyses. Table 3 summarizes the 
average and standard deviation of the computed mean 
curvature and the relative difference to the fluid pressure 
derived mean curvature, κmP =0.133 voxel-1 for the 
smoothing level 2 as shown in Fig. 4(b), (e), (h). We note 
that Li et al. [3] proposed that in addition to the distance 
cutoff, taking an average weighted by the distance from 
the solid surface further improves the accuracy of 
curvature measurement using synthetic test cases of the 
interface in a cylindrical structure with a circular-cross 
section; however, taking a distance-weighted average did 
not improve the estimation of curvature in our cases as we 
can conclude from the overestimated curvature values 
observed in the central region of the oil droplet in Fig. 4(a) 
~ (i). 

In fact, the optimum smoothing method and its level 
of smoothing is dependent on the shape and the size of an 
object. Therefore, here, we only provide the qualitative 
features of the three smoothing methods. CGS preserves 
the shape of an object, but significant smoothing cannot 
be applied even with increasing the kernel size, because 
the resultant surface is constrained by the original voxel 
data. As a result, CGS tends to give a wider range of 
variation. LPS can apply significant smoothing by 

Table 1. Comparison between the radius of curvature 
obtained from the analytical solution and that obtained with 
a circle fit to the simulated interface for different grid sizes. 

   analytical simulated  
grid size Sw R R %Diff. 
μm % μm μm % 
1.0 35.9% 70.3 70.9 0.9% 
2.0 35.6% 69.9 68.2 -2.4% 
3.5 36.0% 70.3 68.3 -3.0% 
5.0 32.7% 67.0 65.9 -1.7% 

 

 
Fig.  3. An oil droplet in a 3D triangular pore space. (a) 
Initial condition. (b) Equilibrium condition. Here, solid is 
shown in transparent green and the oil phase is shown in 
red. 

Table 2. Parameters used for Constrained Gaussian 
smoothing (CGS), Laplacian smoothing (LPS) and boundary 
preserving Gaussian smoothing (BPGS). 

smoothing parameters smoothing level 
method   level 1 level 2 level 3 
CGS kernel size 1 3 9 
LPS number of iterations 200 600 1800 
BPGS number of iterations 50 150 450 
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increasing the number of iterations; however, this could 
change the shape of the interface as shown in a top part of 
the interface in Fig. 4(f) where we see the bending of the 
interface towards the opposite direction. This is caused by 
the propagation of errors in the three-phase contact line 
through many iterations. However, combining with the 
distance cutoff, this erroneous part can be effectively 
removed while preserving a well smoothed surface in the 
middle of the interface. BPGS gives the similar results to 
LPS, while better keeping the shape of an object 
compared to LPS. 

For the simulated interface which was directly 
obtained from the simulated color function without any 
smoothing, the computed curvature showed good 
agreement with the fluid pressure derived curvature with 
a smaller standard deviation (Table 3). Moreover, since 
this surface did not show the errors close to the three-
phase contact line, the average and standard deviation 
without the distance cutoff also gave similar values, i.e., 
the average of 0.132 voxel-1 and standard deviation of 
3.99×10-3 voxel-1. 

3.3 Local capillary pressure estimation for complex 
porous media 

Two realistically complex pore structures were used: 
a synthetic bead pack pore structure and micro-CT images 
of Bentheimer sandstone. For these structures, simulation 
domains were composed of 256×256×256 voxels with a 
grid size of 3.56 µm as shown in Fig 5. For the analysis of 
the simulation results, the pore structures were divided 
into pore regions using the separate pore algorithm in 
Avizo, resulting in 402 and 272 pore regions for the bead 
pack and Bentheimer sandstone, respectively. The mean 
pore radius which accounts for 50% of the pore volume 
was 37 μm and 30 μm for the beadpack and Bentheimer 
sandstone, respectively.  

The identical density and viscosity of water and oil 
phase were set to 1,000 kg/m3 and 1 mPa, respectively. 
The interfacial tension and contact angle were set to 25 
mN/m and 45°, respectively. All 6 faces of the cubic 
simulation domain were covered with solid voxels, i.e., a 
no-slip boundary condition was applied to all 6 faces. 
Initially, 50% of oil and 50% of water were randomly 
placed in pore voxels, then the simulations were 
performed with no external force for 250,000 time steps 
(corresponding to 0.1 seconds) until they reached 
equilibrium conditions. 

Fig. 6 shows the simulated phase distribution at the 
equilibrium condition. Similar to the analysis presented in 
the previous section, the simulated interface and the 
smoothed interface were prepared from the simulation 
results. Curvature computation was performed on these 
surfaces. Figs. 7 and 8 show the histogram of the 
computed curvature for the bead pack and Bentheimer 
sandstone, respectively. The fluid pressure derived mean 

 
Fig. 4. The oil/water interface after the application of the 
several smoothing methods with different smoothing 
levels. CGS with a kernel size of (a) 1 voxel, (b) 3 voxels 
and (c) 9 voxels. LPS with (d) 200 iterations, (e) 600 
iterations and (f) 1800 iterations. BPGS with (g) 50 
iterations, (h) 150 iterations and (i) 450 iterations. (j) The 
simulated interface. Here, the surface is colored by the 
value of mean curvature. The correct surface should 
present uniform mean curvature as seen in the simulated 
interface since the droplet is in capillary equilibrium for 
which the capillary pressure is uniform. 

Table 3. Voxel based interfaces with the smoothing level 
2 (see Table 2) and a distance cutoff of 3 voxels. Here, the 
relative difference was computed to the fluid pressure 
derived mean curvature of κmP=0.133 voxel-1. 

surface computed curvature relative 
 avg. std. difference 
  [voxel-1] [voxel-1] [%] 

simulated interface 0.134 3.23 × 10-3 0.7% 
smoothed with CGS 0.149 3.23 × 10-2 12.1% 
smoothed with LPS 0.132 2.40 × 10-2 -0.1% 
smoothed with BPGS 0.139 2.68 × 10-2 5.0% 

 

 
Fig. 5. Pore structures of (a) the bead pack and (b) the 
Bentheimer sandstone. 
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curvature, κmP, obtained with Eq. 10 is also shown by the 
vertical line. In both figures, the histograms obtained from 
the smoothed interface without and with the distance 
cutoff are shown in (a) and (b), while those obtained from 
the simulated interface without and with the distance 
cutoff are shown in (c) and (d). The average and standard 
deviation of these distributions are summarized in Table 
4 for the bead pack and Table 5 for the Bentheimer 
sandstone. 

Here, we discuss the following two key observations. 
First, the computed curvatures obtained with the 
smoothed interface show the wide range of the 
distribution when the cutoff is not applied, while the 
curvatures obtained with the simulated interface show a 
much narrower range. For the histograms without the 
cutoff, the difference between the distributions obtained 
with the smoothed interfaces and the simulated interface 
suggests that there are many erroneous values in curvature 
computation on the smoothed surfaces. The histograms 

obtained with CGS appeared to have the most similar 
distribution to that obtained with the simulated interface. 
However, as shown in Table 4 and 5, their average values 
are much higher than that obtained from the fluid pressure 
and simulated interface because of the long tails of their 
distribution toward values higher than 0.3, which are not 
shown in Figs. 7 and 8. Second, after the application of 
the distance cutoff, all the histograms obtained with the 
smoothed interface become similar to that obtained with 
the simulated interface. However, in both the smoothed 
and the simulated interface, the data points of high 
curvature values have been lost. This is because the 
distance cutoff removes the data points of not only the 
edges of the interface but also the entire parts of the 
interface in small pores, which tend to give a high 
curvature value. Although a high curvature value is not 
captured when the distance cutoff is applied, the 
smoothed interface seems to provide a good estimate of 
local mean curvature values of the interface. This will be 

 
Fig. 6. The simulated phase distribution of (a) the bead pack pore structure and (b) the Bentheimer sandstone pore structure. 
Here, only oil is shown in red, while water and solid are transparent. The extracted interface based on the simulation results for 
(c) the bead pack and (d) the Bentheimer sandstone. This was performed extracting the contour line of ρN=0. 

 
Fig. 7. The histogram of computed mean curvature for the 
bead pack. The histograms computed on the smoothed 
interface without and with the distance cutoff (a and b). 
The histograms computed on the simulated interface 
without and with the distance cutoff (c and d). The fluid 
pressure derived mean curvature obtained with Eq. 10 is 
also shown by the vertical line. 

 
Fig. 8. The histogram of computed mean curvature for the 
Bentheimer sandstone. The histograms computed on the 
smoothed interface without and with the distance cutoff (a 
and b). The histograms computed on the simulated 
interface without and with the distance cutoff (c and d). 
The fluid pressure derived mean curvature obtained with 
Eq. 10 is also shown by the vertical line. 
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further discussed in the following analysis. Among the 
three smoothing methods, when the cutoff is applied, LPS 
gave the closest average value of the mean curvature to 
that obtained from the simulated interface with the 
smallest standard deviation.    

To further investigate the accuracy of curvature 
computation on the interface, the comparison was made 
on a pore-by-pore basis. First, we computed local 
capillary pressure applying Eq. 10 for each pore region. 
This local capillary pressure was converted to the mean 
curvature for each pore region using Eq. 1. Next, we also 
obtained the mean curvature for each pore region by 
taking the average of the computed curvature values on 
the interfaces in that pore region. Figs. 9 and 10 show the 

comparison between the dimensionless mean curvature 
obtained from the simulated fluid pressure and that 
obtained from the computed curvature on the interface for 
the bead pack and Bentheimer sandstone, respectively. In 
both, the curvature computed on the simulated interfaces 
gave consistent values with those obtained from the fluid 
pressure. This means that when the interface is reasonably 
smooth, the curvature computation gives an accurate 
estimation of local capillary pressure. For the curvature 
computed on the smoothed interface, CGS shows highly 
overestimated curvature values for some pore regions, 
while LPS and BPGS estimate curvature within a range of 
about ±20% difference from the curvatures obtained with 
the fluid pressure for the mean curvature smaller than 

Table 4. The average and standard deviation of the 
distribution of computed mean curvature for the bead pack 
shown in Fig. 7. 

    computed curvature 
  avg. std. 
    [voxel-1] [voxel-1] 

simulated fluid pressure 7.40 × 10-2 N/A 
without the cutoff   
 simulated interface 7.36 × 10-2 4.25 × 10-2 

 smoothed with CGS 11.5 × 10-2 16.1 × 10-2 

 smoothed with LPS 3.06 × 10-2 5.63 × 10-2 
  smoothed with BPGS 4.54 × 10-2 6.87 × 10-2 
with the cutoff   
 simulated interface 7.12 × 10-2 1.22 × 10-2 

 smoothed with CGS 8.02 × 10-2 8.43 × 10-2 

 smoothed with LPS 7.01 × 10-2 2.03 × 10-2 
  smoothed with BPGS 7.62 × 10-2 2.54 × 10-2 

 

Table 5. The average and standard deviation of the 
distribution of computed mean curvature for Bentheimer 
sandstone shown in Fig. 8. 

    computed curvature 
  avg. std. 
    [voxel-1] [voxel-1] 

simulated fluid pressure 9.73 × 10-2 N/A 
without the cutoff   
 simulated interface 11.1 × 10-2 8.20 × 10-2 

 smoothed with CGS 19.3 × 10-2 27.0 × 10-2 

 smoothed with LPS 4.24 × 10-2 7.64 × 10-2 
  smoothed with BPGS 8.51 × 10-2 10.8 × 10-2 
with the cutoff   
 simulated interface 7.17 × 10-2 2.51 × 10-2 

 smoothed with CGS 8.16 × 10-2 8.48 × 10-2 

 smoothed with LPS 7.45 × 10-2 3.12 × 10-2 
  smoothed with BPGS 7.81 × 10-2 3.60 × 10-2 

 

 
Fig. 10. Comparison of local mean curvature for the 
Bentheimer sandstone on pore-by-pore basis. X-axis 
shows the dimensionless mean curvature obtained from 
the simulated fluid pressure, while the Y -axis shows that 
computed on the interface. A unit slope indicating perfect 
agreement in these values is shown by a black solid line, 
while, ±20% difference is shown by black dotted lines. 

 
Fig. 9. Comparison of local mean curvature for the bead 
pack on pore-by-pore basis. X-axis shows the 
dimensionless mean curvature obtained from the 
simulated fluid pressure, while the Y -axis shows that 
computed on the interface. A unit slope indicating perfect 
agreement in these values is shown by a black solid line, 
while, ±20% difference is shown by black dotted lines. 
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about 0.15 voxel-1. Therefore, with LPS or BPGS 
incorporating the distance cutoff of 3 voxels, local 
capillary pressure can be measured with a ±20% error up 
to 0.15 voxel-1 at this resolution.   

4 Conclusions 
Direct numerical simulations were conducted to 

obtain oil and water phase distribution, the exact location 
of the oil/water interface and local fluid pressure. From 
the simulation results, two types of the oil/water interface 
were generated. One is a simulated interface which has a 
sub-resolution smoothness, while the other is a smoothed 
interface. The smoothed interfaces were generated by 
applying three types of smoothing methods to a staircase 
shape surface extracted from synthetic segmented data 
based on the simulated phase distribution. Then, curvature 
computation was performed on these surfaces. The 
resultant mean curvature value from these surfaces was 
compared with that obtained from the simulated fluid 
pressure. This was performed to find the best way to 
extract accurate curvature measurement, and to quantify 
the likely uncertainties. 

First, we tested our approach using a single oil droplet 
in triangular pore space. Computed curvature values on 
the simulated interface showed a narrow distribution 
whose average value was consistent with that obtained 
from the fluid pressure. This means that when the surface 
is sufficiently smooth, the fitting of a quadratic form 
equation to the surface properly computes local 
curvatures. On the other hand, computed curvature values 
on the smoothed interface showed a wide distribution with 
erroneous values close to the three-phase contact lines. 
Therefore, we discarded values whose distance from solid 
surface was fewer than 3 voxels. After the application of 
the distance cutoff, the average of computed mean 
curvature values became closer to that obtained from the 
fluid pressure. However, their standard deviation was on 
the order of 10-2 voxel-1 against the mean curvature value 
of 0.133 voxel-1, which was 10 times higher than that 
obtained from the simulated interface. These deviated 
values were caused by error, since an oil droplet in 
capillary equilibrium should give a uniform value of mean 
curvature. 

Next, realistically complex pore structures of a bead 
pack and Bentheimer sandstone were used to simulate oil 
droplets in capillary equilibrium. When the distance 
cutoff was not applied, curvature computed on the 
simulated interface gave an average value of mean 
curvature consistent with that obtained from the fluid 
pressure for both the bead pack and Bentheimer 
sandstone. However, when the distance cutoff was 
applied, the average value became lower than that from 
the fluid pressure. This is because the distance cutoff 
removes the data points of not only the edges of the 
interface but also the entire parts of the interface in small 
pores, which tend to give a high curvature value. For the 
smoothed interface, the distributions obtained without the 
cutoff were quite different from that obtained from the 
simulated interface. Many negative values of computed 
mean curvatures suggest significant errors in these cases. 

After the application of the distance cutoff, the 
distribution became closer to that obtained with the 
simulated interface. 

Finally, we compared computed mean curvature on a 
pore-by-pore basis. As opposed to the test case performed 
on the single oil droplet, oil droplets with different mean 
curvature values corresponding to different pore sizes can 
be obtained in these simulations. Therefore, we need to 
investigate whether the range of computed mean 
curvature is caused by error or it reflects a variation in 
local capillary pressure. Good agreement between mean 
curvature obtained from the fluid pressure and that 
computed from the simulated surface for each pore region 
suggested that the range of distribution observed in the 
simulated surface properly captures variation in local 
capillary pressure. For the smoothed interface with the 
cutoff, LPS and BPGS estimated curvature within a range 
of about ±20% difference from the curvatures obtained 
with the fluid pressure for mean curvatures smaller than 
about 0.15 voxel-1, while CGS showed highly 
overestimated curvature values for some pore regions. 

In conclusion, the application of the distance cutoff is 
necessary to remove the errors close to the three-phase 
contact line. Among the three tested smoothing methods, 
LPS appeared to be the best method since it gave the 
closest average of mean curvature values to that obtained 
from the simulated interface with the smallest standard 
deviation. In addition, it gave good estimates of the local 
mean curvature for each pore with a ±20% error up to 0.15 
voxel-1 at this resolution. 

Currently, we are using the similar approach to 
quantify the accuracy of curvature computation for 
drainage and imbibition events on the bead pack and 
Bentheimer sandstone. This will be discussed in a future 
publication. 
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