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Abstract.  The most influential parameter on the behavior of two-component flow in porous media is 
“wettability”. When wettability is being characterized, the most frequently used parameter is the “contact angle”. 
When a fluid-drop is placed on a solid surface, in the presence of a second, surrounding fluid, the fluid-fluid 
surface contacts the solid-surface at an angle that is typically measured through the fluid-drop. If this angle is less 
than 90°, the fluid in the drop is said to “wet” the surface. If this angle is greater than 90°, the surrounding fluid 
is said to “wet” the surface. This definition is universally accepted and appears to be scientifically justifiable, at 
least for a static situation where the solid surface is horizontal. Recently, this concept has been extended to 
characterize wettability in non-static situations using high-resolution, two-dimensional digital images of multi-
component systems. Using simple thought experiments and published experimental results, many of them decades 
old, it will be demonstrated that contact angles are not primary parameters – their values depend on many other 
parameters. Using these arguments, it will be demonstrated that contact angles are not the cause of wettability 
behavior but the effect of wettability behavior and other parameters. The result of this is that the contact angle 
cannot be used as a primary indicator of wettability except in very restricted situations. Furthermore, it will be 
demonstrated that even for the simple case of a capillary interface in a vertical tube, attempting to use simply a 
two-dimensional image to determine the contact angle can result in a wide range of measured values. This 
observation is consistent with some published experimental results.  It follows that contact angles measured in 
two-dimensions cannot be trusted to provide accurate values and these values should not be used to characterize 
the wettability of the system. 

 
1 Introduction 
This paper will discuss various considerations of the 
interface between a gas, a liquid, and a solid surface.  
The fundamental principle of a force balance between 
the gas and the liquid, if they are separated by a curved 
surface, is that the difference in pressure across that 
surface, ∆𝑃𝑃, is given by 

∆𝑃𝑃 = 𝜎𝜎𝑙𝑙𝑙𝑙  ( 1
𝑅𝑅1

+ 1
𝑅𝑅2
)  (1) 

Here 𝜎𝜎𝑙𝑙𝑙𝑙 is the interfacial tension between the gas and 
the liquid, and 𝑅𝑅1 and 𝑅𝑅2 are the two radii of curvature 
of the surface.  If a drop of fluid is placed on a flat, solid 
surface, a balance of forces requires that (Young’s 
equation) 

𝜎𝜎𝑙𝑙𝑙𝑙 cos𝜃𝜃 = 𝜎𝜎𝑠𝑠𝑠𝑠 − 𝜎𝜎𝑠𝑠𝑠𝑠  (2) 
Here 𝜎𝜎𝑠𝑠𝑠𝑠 is the interfacial tension between the solid and 
the gas, 𝜎𝜎𝑠𝑠𝑠𝑠 is the interfacial tension between the solid 
and the liquid, and 𝜃𝜃  is the angle that the liquid-gas 
surface makes with the solid surface, termed the 
“contact angle”.  If the solid is a circular capillary tube, 
then the pressure difference across the surface is termed 
“capillary pressure”, 𝑃𝑃𝑐𝑐, and simple rules of geometry 
lead to the expression 

𝑃𝑃𝑐𝑐 =
4 𝜎𝜎𝑙𝑙𝑙𝑙 cos𝜃𝜃

𝛿𝛿    (3) 

Here 𝛿𝛿 is the diameter of the tube. These three equations 
are all that is required to demonstrate the characteristic 
behaviors of contact angles.   
 

Generally, Equation 2 is used to determine the 
wettability of a three component (liquid-gas-solid) 
system.  Specifically, if 𝜃𝜃 when measured through the 
liquid is found to be much less than 90˚, the system is 
said to be strongly “liquid wet”; a typical liquid wet 

system is water/ air/ glass.  If  𝜃𝜃 is near 90˚ the system 
is said to be “neutrally wet”.  If 𝜃𝜃 is much greater than 
90˚, the system is said to be “gas wet”; a typical gas wet 
system is mercury/ air/ glass.  For very simple cases, 
such as a drop of water on a horizontal solid surface, this 
definition of wettability is universally accepted.  
Unfortunately, this definition has become dogmatic and 
it has been extended to mean that the contact angle 
directly defines the wettability in all situations.  In 
particular, with the advent of high resolution imaging 
methods, apparent contact angles can be measured in-
situ in both static and dynamic situations.  In the present 
paper, published results and simple thought experiments 
are used to demonstrate that contact angles are not 
always characteristic of wettability.  Furthermore, it is 
demonstrated that direct measurement of in situ contact 
angles is difficult without sophisticated interpretation 
methods. 
 

This paper is not a condemnation of the ability to 
determine contact angles on the microscopic scale – it is 
a cautionary statement that such determinations must be 
done with great care.  However, this paper does 
demonstrate that interpreting wettability from direct 
contact angle measurements is not always a meaningful 
activity. 
 
2 The Contact Angle and Wettability  
It is a tacit assumption that if a contact angle can be 
measured, then the wettability of a system can be 
determined.  However, there are many cases where this 
assumption is obviously wrong.  One of these cases is 
demonstrated in the classic monograph by Craig [1].  
His Fig. 2.3 clearly demonstrates that even in the case of 
a static contact angle measurement, it can take many 
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hundreds of hours to obtain an equilibrium contact 
angle.  The illustration is for an oil/ water/ solid surface 
and it could be argued that such systems are susceptible 
to complex chemical factors.  However, even this simple 
case provides a cautionary note.  Modelling of 
displacement processes generally utilize capillary 
pressure data that is time-independent.  But if the contact 
angle is time dependent, then it follows from Equation 3 
that the capillary pressure must be time dependent.  
Therefore, all displacement processes are potentially 
time dependent, an issue rarely considered when 
analyzing such processes.  
 

A second case of interest is that of a drop on a 
surface, when the surface is gradually tilted from the 
horizontal.  This case has been studied since at least the 
late 1930s [2].   A more recent paper by Krasovitski and 
Marmur [3] provides a succinct description of this case.  
What they found is that the drop distorts but does not 
move until the plate is tilted to a critical angle, the “slip 
angle”.  Assuming, a gas/ water/ solid system, when the 
drop distorts, the contact angle at the up-tilt end of the 
drop, 𝜃𝜃𝑢𝑢, decreases and the contact angle at the down-
tilt end of the sample, 𝜃𝜃𝑑𝑑, increases.  Using the 
conventional interpretation, this would mean that simply 
tilting the surface causes the up-tilt end of the system to 
become more water-wet while the down-tilt end of the 
system moves toward neutral-wettability 
 

It is found both experimentally and theoretically 
that the slip angle, 𝛼𝛼, is related to the two contact angles 
by the relation  

sin 𝛼𝛼 = 𝐶𝐶 𝜎𝜎𝑙𝑙𝑙𝑙(cos𝜃𝜃𝑢𝑢 − cos 𝜃𝜃𝑑𝑑)  (4) 
Here 𝐶𝐶is a constant that depends on the densities of the 
fluids, gravitational acceleration, and drop shape.  
Krasovitski and Marmur also document that once the 
drop begins to move, the values of 𝜃𝜃𝑢𝑢 and 𝜃𝜃𝑑𝑑 do not 
remain constant.  An argument can be made that these 
changes are due to the fact that the up-tilt contact line is 
receding over a surface which was in contact with water, 
while the down-tilt contact line is advancing over a 
surface that was in contact with gas, and that this 
difference accounts for the difference between 
“advancing contact angles” and “receding contact 
angles”.  However, at tilt angles less than the slip angle, 
this argument does not apply because the drop has not 
yet moved.  
 

Next, consider a water/ air/ solid system in a vertical 
capillary tube with one end immersed in a tray of liquid 
and the other open to air.  The well-known behavior is 
that water will rise in the tube until a force balance 
obtains between the hydrostatic and capillary forces.  
The pressure in the water at the water-surface in the tray 
must be equal to the pressure in the air at this point. 
Therefore, this force balance requires that  

4 𝜎𝜎𝑙𝑙𝑙𝑙 cos𝜃𝜃
𝛿𝛿 = (𝜌𝜌𝑙𝑙 − 𝜌𝜌𝑔𝑔) 𝑔𝑔 ℎ   (5) 

Here  𝜌𝜌𝑙𝑙 − 𝜌𝜌𝑔𝑔 is the difference between the densities of 
water and air, 𝑔𝑔 is the acceleration of gravity, and ℎ is 
the height of the liquid/ air interface in the capillary tube 

relative to the height of the liquid/ gas interface in the 
tray.     
 

Now consider what would happen if the tube is 
gently removed from the tray and a second water/ air 
surface is created at the bottom of the tube.  The pressure 
below the bottom water/ air surface differs from the 
pressure above the top water/ air surface by 𝜌𝜌𝑔𝑔 𝑔𝑔 ℎ.  
Therefore, the hydrostatic pressure of the water in the 
tube just makes up for the capillary pressure at the upper 
surface and the pressure difference at the bottom water/ 
air surface must remain at zero.  But this implies that the 
bottom surface is flat and that 𝜃𝜃 is 90˚.  Using our 
conventional definition of wettability means that the top 
surface is strongly water-wet and the bottom surface is 
neutrally-wet. 
 

Continuing this line of reasoning, various amounts 
of water can be forced from the tube to obtain force 
balances that would require 

4 𝜎𝜎𝑙𝑙𝑙𝑙
𝛿𝛿 (cos 𝜃𝜃𝑡𝑡𝑡𝑡𝑡𝑡 − cos𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) = 

   (𝜌𝜌𝑙𝑙 − 𝜌𝜌𝑔𝑔) 𝑔𝑔 ℎ  
(5) 

Therefore, by implication, the contact angle at the 
bottom water/air surface would have values given by the 
equation 
𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 

     arcos (cos𝜃𝜃𝑡𝑡𝑡𝑡𝑡𝑡 −
𝛿𝛿 (𝜌𝜌𝑙𝑙 − 𝜌𝜌𝑔𝑔) 𝑔𝑔 ℎ

4 𝜎𝜎𝑙𝑙𝑙𝑙
) (6) 

This equation implies that wettability at the bottom of 
the tube varies continuously with height of water. 
 

The above description is an approximation to what 
would actually happen experimentally.  The bottom of 
the tube includes a flat surface which complicates the 
situation.  Water can spread across this surface resulting 
is a convex-up surface that increases the pressure at the 
bottom surface, hence the pressure at the top surface.  
However, the conclusion remains the same – the contact 
angle at the top surface cannot be the same as the contact 
angle at the bottom surface or the tube will drain and 
experimentally it is found that the tube does not drain. 
  

A variation on the above reasoning can be made for 
a horizontal tube that is spun in a centrifuge.  The 
equation describing the capillary pressure in this system 
is   

𝑃𝑃𝑐𝑐𝑐𝑐 − 𝑃𝑃𝑐𝑐𝑐𝑐 = (𝜌𝜌𝑔𝑔 − 𝜌𝜌𝑙𝑙)
 𝜔𝜔2

2 (𝑟𝑟𝑜𝑜2 − 𝑟𝑟𝑖𝑖2) (7) 

Here 𝑟𝑟 is the radius of rotation, the subscript 𝑖𝑖 denotes 
the variables at the fluid interface closest to the center of 
rotation, 𝑜𝑜 denotes the variables at the interface farthest 
from the center of rotation, and 𝜔𝜔 is the angular velocity.  
At zero angular velocity, the pressures in the water at the 
two ends of the tube are the same.  As the angular 
velocity is increased, the equilibrium condition requires 
that the capillary pressures at the two ends of the tube 
must differ.  Using Equation 3, this difference can be 
expressed in terms of contact angles:  

2
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4 𝜎𝜎𝑙𝑙𝑙𝑙
𝛿𝛿 (cos𝜃𝜃𝑜𝑜 − cos 𝜃𝜃𝑖𝑖) = 

       (𝜌𝜌𝑔𝑔 − 𝜌𝜌𝑙𝑙)
 𝜔𝜔2

2 (𝑟𝑟𝑜𝑜2 − 𝑟𝑟𝑖𝑖2) 
(8) 

We can conclude from this that the contact angle for the 
interface farthest from the center of rotation varies with 
angular velocity; hence, following conventional 
reasoning, the wettability at this point, is a function of 
angular velocity which is not true. 
 

There are also many reports in the literature of how 
the contact angle at the interface of two fluids in a tube 
differ with the velocity of the interface.  It is well known 
that the problem of a moving contact angle cannot be 
solved analytically because a singularity arises in the 
equations at the contact point of the two fluids and the 
solid surface.  This singularity is generally treated by 
assuming that there is “slip” at the contact line.  Based 
on this model, the classic paper by Cox [4] showed that 
the apparent contact angle was related to the static 
contact angle as a function of the capillary number.  This 
behavior was verified experimentally in such works as 
Fermigier and Jenffer [5].  It is found that, above a 
capillary number of approximately 10−3, the apparent 
contact angle can vary significantly, going from static 
values of 30° to values approaching 180°.  In terms of 
wettability, these contact angles imply a variation from 
strongly water wet to strongly oil wet.  Therefore, for 
dynamic displacements in capillary tubes, the contact 
angle cannot be used to characterize the wettability.  If 
this is true for flow in capillary tubes, it must also be true 
for flow in porous media.       
 
3 In-Situ Measurements of Contact Angles 
There has been a recent interest in measuring contact 
angles in-situ by means of micro-imaging techniques 
(e.g. Andrew et al  [5], Held et al  [6]).  However, similar 
to the measurement of  porosity by means  of two-
dimensional images, in-situ measurement of contact

 
 
 Fig. 1a  Nomenclature for an interface in a vertical tube 
(elevation view). 
 

angles are problematic.  This will be illustrated by using 
the case of an interface in a vertical capillary tube. 
 

Fig. 1 shows the nomenclature for an interface in a 
vertical tube.  The interface is assumed to have a 
spherical shape with a radius of curvature, 𝑅𝑅. Two 
coordinate systems will be used: a Cartesian system with 
coordinates 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 and a spherical coordinate system 
with coordinates 𝑟𝑟, 𝛼𝛼, 𝛽𝛽.  The origin of both coordinate 
systems is the center of curvature of the surface.  Here, 
𝑧𝑧 is assumed positive downward.  

 

 
Fig. 1b  Nomenclature for an interface in a vertical tube 
(plan view). 
 

The equations of the surface in the Cartesian 
coordinate system in terms of the spherical system are 

𝑥𝑥𝑠𝑠 = 𝑅𝑅 sin𝛽𝛽 cos𝛼𝛼   (9a) 
 

𝑦𝑦𝑠𝑠 = 𝑅𝑅 sin𝛽𝛽 sin𝛼𝛼 (9b) 
 

𝑧𝑧𝑠𝑠 = 𝑅𝑅 cos 𝛽𝛽 (9c) 
 
The equations for the wall in Cartesian coordinates in 
terms of the spherical system are 

𝑥𝑥𝑤𝑤 = 𝑅𝑅 sin𝜃𝜃 cos𝛼𝛼   (10a) 
 

𝑦𝑦𝑤𝑤 = 𝑅𝑅 sin𝜃𝜃 sin𝛼𝛼 (10b) 
 

𝑧𝑧𝑤𝑤 = 𝑧𝑧 (10c) 
 

It is next assumed that the interface is cut by a plane, 
as shown in Fig. 2, such that the cross-section of the 
interface can be examined in a two-dimensions plane, 
𝑢𝑢 − 𝑤𝑤.  (This plane is meant to represent the observation 
plane in a two-dimensional imaging experiment.)  The 
equations for this plane in terms of the Cartesian 
coordinate system are 

𝑥𝑥𝑝𝑝 = 𝑢𝑢   (11a) 
 

𝑦𝑦𝑝𝑝 = 𝑦𝑦𝑒𝑒 − 𝑤𝑤 cos 𝛾𝛾 (11b) 
 

𝑧𝑧𝑝𝑝 = 𝑧𝑧𝑒𝑒 + 𝑤𝑤 sin𝛾𝛾 (11c) 
 

𝛽𝛽 
𝜃𝜃 

𝑟𝑟 𝑅𝑅 

 

𝑦𝑦 

𝑧𝑧 

𝑟𝑟𝑜𝑜 

𝑦𝑦 

𝑥𝑥 

𝛼𝛼 
𝑟𝑟 
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The equations for the surface in the two-
dimensional plane in terms of the spherical system can 
be found by combining Equations 9 and 11.  The result 
is 

𝑢𝑢 = 𝑅𝑅 sin𝛽𝛽 cos 𝛼𝛼   (12a) 
 

𝑤𝑤 = 𝑅𝑅 cos𝛽𝛽 − 𝑧𝑧𝑒𝑒
sin𝛾𝛾  (12b) 

 

𝑤𝑤 = 𝑦𝑦𝑒𝑒 − 𝑅𝑅 sin𝛽𝛽 sin𝛼𝛼
cos𝛾𝛾  (12c) 

 
The two equations for 𝑤𝑤 require that 

(cos 𝛽𝛽 − 𝑧𝑧′𝑒𝑒) cos𝛾𝛾 = 
        (𝑦𝑦′𝑒𝑒 − sin𝛽𝛽 sin𝛼𝛼) sin 𝛾𝛾   (13) 

where 𝑦𝑦′𝑒𝑒 is 𝑦𝑦𝑒𝑒 𝑅𝑅⁄  and 𝑧𝑧′𝑒𝑒 is 𝑧𝑧𝑒𝑒 𝑅𝑅⁄ . 
 

 
Fig. 2  A two dimensional plane that intersects the 
surface and the wall. 
 

The two-dimensional surface can be characterized 
by the point where the plane crosses the 𝑧𝑧- axis, 𝑧𝑧𝑜𝑜, and 
the angle the plane makes with the horizontal, 𝛾𝛾.  This 
will allow the calculation of the coordinates where the 
plane crosses the surface in the cross-section shown in 
Fig. 2.  Provided that the plane intersects the plane of 
contact, the minimum 𝛽𝛽-value, denoted by 𝛽𝛽1, will 
always be 𝜋𝜋 2⁄ − 𝜃𝜃 (the point where the surface contacts 
the wall).  For this condition,  

𝑤𝑤 = 𝑅𝑅 sin 𝜃𝜃 − 𝑧𝑧𝑒𝑒
sin 𝛾𝛾 = 𝑦𝑦𝑒𝑒 − 𝑅𝑅 cos 𝜃𝜃

cos𝛾𝛾    

               tan 𝛾𝛾 > 𝑧𝑧𝑜𝑜
𝑟𝑟𝑜𝑜

   
(14) 

If the intersecting plane does not intersect the plane of 
contact, then the 𝛽𝛽-value can be found using Equation 
13 and setting the 𝛼𝛼-values to 𝜋𝜋 2⁄ ; this 𝛽𝛽1-value is 
given by 

sin𝛽𝛽1 = (𝑧𝑧′𝑒𝑒 cos𝛾𝛾 + 𝑦𝑦′𝑒𝑒 sin 𝛾𝛾) sin 𝛾𝛾 − 

   cos 𝛾𝛾  √(1− (𝑧𝑧′𝑒𝑒 cos𝛾𝛾 + 𝑦𝑦′𝑒𝑒 sin 𝛾𝛾)2)  
(15) 

 
The second point where the plane intersects the surface, 
𝛽𝛽2, is also given by Equation 13. Again setting the 𝛼𝛼-
values to 𝜋𝜋 2⁄ , this time the solution is  

sin𝛽𝛽2 = (𝑧𝑧′𝑒𝑒 cos𝛾𝛾 + 𝑦𝑦′𝑒𝑒 sin 𝛾𝛾) sin𝛾𝛾 + 

   cos𝛾𝛾  √(1− (𝑧𝑧′𝑒𝑒 cos𝛾𝛾 + 𝑦𝑦′𝑒𝑒 sin 𝛾𝛾)2)  
(16) 

Furthermore, Equation 13 can be used to generate 𝛼𝛼-
values that correspond to 𝛽𝛽-values  
𝛼𝛼 = 

   sin−1 (𝑦𝑦′𝑒𝑒 sin 𝛾𝛾 + 𝑧𝑧′𝑒𝑒 cos 𝛾𝛾 − cos 𝛽𝛽 cos 𝛾𝛾
sin𝛽𝛽 sin 𝛾𝛾 )  (17) 

The shape of the surface in the intersecting plane can 
therefore be calculated for various 𝛽𝛽-value between the 
minimum and the maximum. 
 

For the wall, the coordinates in the intersecting 
plane become 

𝑢𝑢 = 𝑅𝑅 cos 𝜃𝜃 cos 𝛼𝛼   (18a) 
 

𝑤𝑤 = 𝑦𝑦𝑒𝑒 − 𝑅𝑅 cos𝜃𝜃 sin𝛼𝛼
cos𝛾𝛾    (18b) 

The shape of the wall in the intersecting plane can 
therefore be calculated for any 𝛼𝛼–value.  For the wall, 
𝛼𝛼–values range from 0 to 2𝜋𝜋. 
 

A special case is when the intersecting plane is 
vertical.  Then the equation for the plane is  

𝑥𝑥 = 𝑅𝑅 cos𝛽𝛽 cos𝛼𝛼   (19a) 
 

𝑦𝑦 = 𝑦𝑦𝑜𝑜   (19b) 
 

𝑧𝑧 = 𝑧𝑧𝑝𝑝   (19c) 
the intersection of the surface in the plane is  

𝑅𝑅 cos𝛽𝛽 sin𝛼𝛼 = 𝑦𝑦𝑜𝑜   (20a) 
 

𝑦𝑦𝑝𝑝 =  𝑅𝑅 sin𝛽𝛽   (20b) 
the maximum 𝛽𝛽-value is  

𝛽𝛽 = cos−1 (𝑦𝑦𝑜𝑜𝑅𝑅 )   (21) 
and the 𝛼𝛼–values are given by 

𝛼𝛼 = sin−1 ( 𝑦𝑦𝑜𝑜
𝑅𝑅 cos𝛽𝛽)   (22) 

 
The apparent contact angle can be found from  

(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
− (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

= tan𝜃𝜃𝑎𝑎 (23) 

evaluated at the wall.  This is a complex derivative best 
done numerically. 
 
4 Typical Interface Shapes 
Fig. 3 through 9 show typical interface shapes for planes 
that intersect the interface at various positions.  These 
figures were calculated assuming that 𝜃𝜃 = 30°.  In each 
figure, the left panel shows a schematic of the 
intersection and the right panel shows what would be 
observed in the intersecting plane, that is, the plane of 
observation in an imaging experiment.  
 

Fig. 3 shows the case where the plane intersects the 
interface horizonally.  The conclusion that could be 
drawn from the image is that gas is flowing as an 
encapsulated phase and that the water is perfectly 
wetting with an apparent contact angle of 𝜃𝜃𝑎𝑎 = 0.  In 
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this case, the intersection of the plane with the wall is 
circular. 
 

Fig. 4 shows the case where the plane intersects the 
interface before it intersects the wall.  The conclusion 
that could be drawn from the image is that gas is flowing 
as an encapsulated phase, that the water is perfectly 
wetting with an apparent contact angle of 𝜃𝜃𝑎𝑎 = 0, and 
perhaps water is trapped in a pore space located at the 
bottom of the image.  In this case, the intersections of 
the plane with the wall is elliptical and the plane with 
the interface is circular. 
 

Fig. 5 shows the case where the plane intersects the 
surface at the point where the interface contacts the wall.  
In this case, 𝛾𝛾 ≅ 20° and the apparent contact angle that 
would be measured in the image is 𝜃𝜃𝑎𝑎 = 0.  In this case, 
the intersections of the plane with the wall is elliptical 
and the plane with the interface is circular. 
 

Fig. 6 shows the case where the plane intersects the 
surface at the point such that = 45° ; the apparent 
contact angle that would be measured in the image is 
𝜃𝜃𝑎𝑎 = 24.5°.  In this case, the intersection of the plane 
with the wall is elliptical. 
 

Fig. 7 shows the limiting case where the plane is 
vertical,𝛾𝛾 = 90°; the apparent contact angle that would 
be measured is the true contact angle 𝜃𝜃𝑎𝑎 = 30°.  In this 
case, the intersection of the plane with the wall is 
elliptical; however, the ellipse is infinitely extended 
such that the wall appears as two vertical lines. 
 

Fig. 8 shows the case where the plane is vertical, 
𝛾𝛾 = 90°, but is offset from the z-axis half the distance to 
the wall. In this case the apparent contact angle that 
would be measured is 𝜃𝜃𝑎𝑎 = 33.7°.  The wall still appears 
as two vertical lines; however, the spacing between the 
lines is less than for the previous case.  This could be 
interpreted to mean that the image is for a capillary tube 
with a smaller diameter than in the previous case. 
 

Fig. 9 shows the case where the plane is vertical, 
𝛾𝛾 = 90°, but is offset from the z-axis by 95% of the 
distance to the wall. In this case the apparent contact 
angle that would be measured is 𝜃𝜃𝑎𝑎 = 61.6°.  The wall 
still appears as two vertical lines; however, the spacing 
between the lines is much less than for the previous case.  
This could be interpreted to mean that the image is for a 
capillary tube with a much smaller diameter than in the 
previous case. 
 

The implications of the last two cases is obvious.  
Simply examining the images to obtain apparent contact 
angles, it could be concluded that the contact angles for 
smaller sized capillary tubes increase and approach 
𝜃𝜃𝑎𝑎 = 90° in the limit.  This would suggest that smaller 
capillary tubes are neutrally wet while larger tubes are 
water wet.  This conclusion is, of course, specious. 
 

In summary, using intersecting planes for various 
positions, it is possible to measure apparent contact 
angles anywhere in the range 0° ≤ 𝜃𝜃𝑎𝑎 ≤ 90°.  This 
conclusion is completely supported by the work of 
Andrew et al [6].  They used what they called a 
“resampling plane” that could be reoriented relative to 
the grain surface.  They found that the measured angle 
could vary from approximately 10° to 110° (their Fig. 
10) by repositioning the resampling plane. 
 
The above analysis considers the very simple example 
of a straight, circular capillary tube.  Real porous media 
have flow passages that diverge, converge, twist and 
turn.  An analysis of such passages is beyond the scope 
of the present paper.  However, it is obvious that the 
measurement of true contact angles in such passages 
would be much more complex than that for the simple 
model considered here. 
 
5 A Way Forward 
It should be no surprise that the contact angle must be 
an effect, not a cause.  Examining Young’s equation, 
there are four parameters 𝜎𝜎𝑙𝑙𝑙𝑙, 𝜃𝜃 , 𝜎𝜎𝑠𝑠𝑠𝑠, and 𝜎𝜎𝑠𝑠𝑠𝑠.  Basic 
principles of functions requires that only three of these 
variables can be independent.  The interfacial tensions 
are assumed to be properties of the substances, related 
to how various species of molecules interact across a 
surface.  They can therefore be assumed to be the 
independent variables.  This implies that the contact 
angle is the dependent variable and 

𝜃𝜃 = 𝑓𝑓 (𝜎𝜎𝑙𝑙𝑙𝑙,𝜎𝜎𝑠𝑠𝑠𝑠, 𝜎𝜎𝑠𝑠𝑠𝑠)  (24) 
 

Furthermore, Young’s equation depends on a static 
force balance and other force terms must affect that 
balance if they are present.  It is unreasonable to expect 
the values of the interfacial tensions to change with the 
additional forces; hence, the contact angle must change.  
In fact, many theoretical studies utilize a modified 
Young’s equation that includes body forces and fluid 
stresses. 
 

I emphasize that this paper is not a condemnation of 
the ability to determine contact angles on the 
microscopic scale – it is a cautionary statement that such 
determinations must be done with great care.  The work 
of Andrew et al [6] shows how the measured contact 
angle varies depending on how the plane of 
investigation is oriented.  Their work could be taken 
one-step further.  Using multiple images, a three-
dimensional interface model could be reconstructed and 
this model could then be interpreted to determine a 
unique contact angle that characterizes the system, 
assuming that such an angle exists.  Based on 
observations made in the Andrew et al work, such a 
process would require much more detailed images than 
they acquired.  They found that there was insufficient 
accuracy in the digital data to determine contact angles 
computationally and they resorted to a manual process.  
This would be impractical if reconstructions of 
interfacial surfaces are performed, particularly in a 
dynamic experiment.  It would appear that one more 
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level of sophistication in image analysis must be 
achieved before contact angles can be systematically 
interpreted from micro-imaging experiments.  There is 
evidence that this type of work is being pursued 
(AlRatrout et al [8]). 
 
6 Conclusions 
The present work supports the following conclusions: 
1. Contact angles are dependent variables, functions 

of fluid/ solid properties (interfacial tensions), 
displacement velocities, history (time, hysteresis, 
and externally applied body forces and viscous 
stresses) – they are effects not causes. 

2. Wettability can be defined dependably by the 
contact angle only for the static case with no 
externally imposed forces.  Contact angles 
measured in dynamic and complex systems may not 
be good indictors of wettability. 

3. It is not possible to measure accurately a contact 
angle in a simple two-dimensional image.  Such 
measurements would require detailed 
reconstruction and interpretation of the three-
dimensional interface. 
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Fig. 3  The shape of the interface in a horizontal plane that cuts the interface.  The water lies below the blue line and the 
air above. 

 

Fig. 4  The shape of the interface in a plane that crosses the interface before it crosses the wall.  The water lies below the 
blue line and the air above. 
 

Fig. 5  The shape of the interface in a plane that intersects the interface at the wall.  The water lies below the blue line 
and the air above. 

Fig. 6  The shape of the interface in a plane for 𝛾𝛾 = 45° .  The water lies below the blue line and the air above. 
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Fig. 7  The shape of the interface in a vertical plane.  The water lies below the blue line and the air above. 

 

Fig. 8  The shape of the interface in a vertical plane offset from the z-axis half the distance to the wall.  The water lies 
below the blue line and the air above. 
 

Fig. 9  The shape of the interface in a vertical plane offset from the z-axis is 95% of the distance to the wall. The water 
lies below the blue line and the air above. 
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