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Abstract. We use the method of density functional hydrodynamics (DFH) to model compositional 
multiphase flows in natural cores at the pore-scale. In previous publications the authors demonstrated that 
DFH covers many diverse pore-scale phenomena, starting from those inherent in RCA and SCAL 
measurements, and extending to much more complex EOR processes. We perform the pore-scale modelling 
of multiphase flow scenarios by means of the direct hydrodynamic (DHD) simulator, which is a numerical 
implementation of the DFH. In the present work, we consider the problem of numerical modelling of fluid 
transport in pore systems with voids and channels when the range of pore sizes exceed several orders of 
magnitude. Such situations are well known for carbonate reservoirs, where narrow pore channels of 
micrometer range can coexist and interconnect with vugs of millimeter or centimeter range. In such 
multiscale systems one cannot use the standard DFH approach for pore-scale modeling, primarily because 
the needed increase in scanning resolution that is required to resolve small pores adequately, leads to a field 
of view reduction that compromises the representation of large pores. In order to address this challenge, we 
suggest a novel approach, in which transport in small-size pores is described by an upscaled effective 
model, while the transport in large pores is still described by the DFH. The upscaled effective model is 
derived from the exact DFH equations using asymptotic expansion in respect to small-size characterization 
parameter. This effective model retains the properties of DFH like chemical and multiphase transport, thus 
making it applicable to the same range of phenomena as DFH itself. The model is based on the concept that 
the transport is driven by gradients of chemical potentials of the components present in the mixture. This is 
a significant generalization of the Darcy transport model since the proposed new model incorporates 
diffusion transport in addition to the usual pressure-driven transport. In the present work we provide several 
multiphase transport numerical examples including: a) upscaling to chemical potential drive (CPD) model, 
b) combined modeling of large pores by DFH and small pores by CPD. 

1 Introduction  

In recent years we witnessed an increasing level of 
capability and acceptance of digital rock as a 
complementary tool in core analysis. This tendency is 
following a gradual increase in both resolution of rock 
imaging techniques and the power of high-performance 
computing that are the key to unlock the potential in the 
core analysis by digital rock. As an answer to the growth 
in the hardware possibilities various modeling methods 
applicable in digital rock also evolve; see reviews in [1-
6]. One of such methods, which the authors are actively 
developing, is the density functional hydrodynamics 
(DFH). 

DFH is essentially a pore scale multi-phase, multi-
compositional approach. As it has been demonstrated in 
previous publications [7-10], various multiphase 
compositional problems can be described in the frame of 
the DFH. The DFH method has found many applications 
in direct pore-scale modeling of various hydrodynamic 
and petrophysical phenomena on digital rock models 

obtained by X-ray micro-CT and SEM [11-21]. The 
practical usefulness of a standard workflow is very much 
dependent on the possibility to resolve necessary pore 
structure adequately, as well as on the rock sample being 
representative for the considered formation. There are 
specific ways to meet both of these requirements, but in 
this work, we discuss the resolution problem only. 
 In many cases the natural rocks are characterized 
by a wide range of pore sizes making the choice of X-ray 
micro-CT resolution very difficult if not altogether 
impossible. Indeed, if pores of both micrometer and 
millimeter range coexist within one piece of rock then, at 
present, it is not always possible to develop 3D model of 
rock microstructure, which can represent all pores. In 
situations like this we propose a combined approach, 
when several 3D digital rock models having different 
resolutions are integrated into one synthetic model. 
Combined multiscale approach is also being developed 
in the frame of pore-network modelling [1], but we 
follow image-based approach as it is inherent in DFH. 
High-resolution sub-models with explicitly resolved 
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small pores are used for direct modeling of transport 
processes by DFH to obtain effective flow 
characteristics. Then these results are incorporated into 
low-resolution model with explicit imaging of large 
pores while small pores are not necessarily resolved. At 
this stage the hydrodynamics in large pores is still 
simulated directly by DFH, while the transport in matrix 
is simulated using the previously computed effective 
transport properties. All these operations are done by the 
DFH pore-scale simulator called DHD (Schlumberger). 
 In effect, the described procedure represents 
upscaling from pore-scale DFH equations to 
macroscopic porous medium equations. As concerned 
with the single-phase flow, our idea is similar to the one 
described in [22, 23]. However, in addition to being 
applicable in general multiphase compositional 
scenarios, the rigorous upscaling starting with the DFH 
equations leads to the transport equations, which 
constitute the significant extension of the Darcy model. 
The driving force for the fluid flow happens to be 
gradients of chemical potentials of fluid chemical 
components that gives the model its name Chemical 
Potential Drive (CPD). Because change in pressure is 
directly related to change in chemical potential, this new 
model is consistent with pressure-drive Darcy approach 
as will be shown below. On the other hand, the CPD 
approach covers certain physical phenomena outside the 
scope of the Darcy model. Here are two examples in 
relation to the latter assertion. First, there are cases, 
when definition of pressure in confined fluid is 
problematic, e.g., when gas mean free path length is 
comparable to pore size (high Knudsen number), or 
liquid in pores with significant disjoining pressure; at the 
same time, the definition of chemical potential is still 
correct in both said instances. Second, there is an easy to 
derive exact solution for two-phase water-oil transport 
velocities in a hydrophilic circular capillary 
 

1 2 2 2
w sw(8 ) (1 ( / ) )u R r R G     (1) 

1 2 2 2 2
o so

4
so sw

(8 ) ( 2( / ) (1 ( / ) )
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u R r R r R
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

 

 


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where the water and oil velocities w o,u u  are defined as 
phase fluxes per capillary cross-section, sw so,   are the 
shear viscosities of water and oil, respectively, R  is the 
capillary radius, r  is the radius of the central region 
occupied by oil, and G  is the pressure gradient. An 
important observation following from Eqs. (1), (2) is that 
the transport of oil is influenced by viscosity of water, 
because oil, being the central phase, is carried by water. 
This cross-phase friction is in direct contradiction with 
the routine concept of phase permeabilities indicating the 
possible role of cross-terms in phase permeability matrix 
[24].  At the same time the cross-component influence is 
inherent in CPD, as it will be demonstrated below. 
Limitations of the Darcy law are discussed in the 
literature and deviations from it are observed in both 

high-accuracy 4D visualization of pore-scale fluid 
dynamics as well as in numerical simulations of pore-
scale flows [25]. One may expect more deviations when 
dealing with complex fluids. 

In Sec. II we give a brief reminder of the DFH 
equations, as well as a derivation of upscaling from DFH 
to CPD. Numerical demonstration of combined DFH and 
CPD models is presented in Sec. III. The overall 
summary and discussion of results is in Sec. IV. 
 The summation over repeated indices is implied 
everywhere. The indices , , 1,2,3a b c  are related to 

Cartesian coordinates ax , the indices , , 1,...,i j k M  
are related to chemical components in the fluid mixture. 
We consider isothermal processes, so the temperature is 
assumed to be fixed, and dependence of certain variables 
on temperature is omitted. We use short symbols for 
partial derivatives: / a

a x    and /t t   , where 
t  is time. 

2 Theoretical concepts and equations 

2.1 Density functional hydrodynamics 
 

Here we provide only some of the basic definitions 
necessary to evolve the step from the DFH equations to 
the CPD ones. A detailed exposition of the DFH can be 
found in [7-10]. 

We consider continuum mechanics description of a 
mixture of M  chemical components present inside a 
spatial region D  having volume DV . The region 
contains iDN   of each type of molecules. To avoid large 
numbers, the quantities iDN  are measured in moles. In 
case of homogeneous and static mixture we define 
chemical component molar densities by /i iD Dn N V . 
If the mixture is inhomogeneous and possibly evolving, 
one can define in  as a dynamic variable at time t  and 

spatial point ax   by establishing a small volume limit, 
such as 

0
( , ) lim ( / )

D

a
i i i D DV
n n t x N V


  . Like 

elsewhere in continuum mechanics, the small volume 
limit is understood as the convergent procedure with 

DV  being small, but still larger than the molecular 
volume. 

By counting the flow rate of molecules through a 
small area inside the mixture, one can define the 
component flux ( , )bia iaI I t x . The component fluxes 
are used to calculate the mass flux a i iaI m I , where 

im  is the molar mass of the ith component. By 
introducing mass density i im n   it is possible to 
define mass velocity 1

a av I  . Component flux i aI  
can be represented as a combination of transport term 
i an v  and diffusion flux i aQ : 

 
i a i a iaI n v Q      (3) 
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where by definition diffusion flux does not influence net 
mass transfer 0i i am Q  . We assume the existence of 
the Helmholtz energy functional 
 

*[ ]D D i
D D

F F n dV f d A


    ,  (4) 

1( ) 2 ( )i i j k a i a jf n n n n     ,        (5) 
 
where D  is the boundary surface of the region D  
(when the region is finite),  ( )if f n  is the bulk 
Helmholtz energy density of homogeneous mixture, i j  
is the positive-definite symmetric matrix,  and 

* * ( )if f n  is the surface Helmholtz energy density, 
which is not equal to zero if D  is a contact surface 
with some immobile solid. It is convenient to recollect 
certain thermodynamic equations involving Helmholtz 
energy 
 

i if n p  , i id f d n , i id p n d , (6) 
 
where i  is the chemical potential of the ith component, 
and p  is the hydrostatic pressure. 

The model in Eqs. (4) and (5) is adequate for 
description of many important phenomena involving 
multiphase multicomponent mixtures. Up to now, it was 
successfully used to simulate multiphase 
multicomponent phenomena with or without phase 
transitions, surfactants, and mixtures with solid phases 
such as gas hydrates or solid particles [9-21, 26]. 

Now we list the DFH statements necessary to move 
forward to CPD. 

The multiphase compositional transport in case of 
isothermal flow of fluids with Newtonian rheology is 
governed by the following equations written in a form of 
conservation laws for chemical components and 
momentum 

 
( ) 0t i a i a ian n v Q    ,   (7) 

( ) ( ) 0t a b a b abv v v p     ,    (8) 
 
together with the relations 
 

ab ab abp    ,    (9) 
( )ab i i ab i j a i b jn n n        ,  (10) 

v s
2

( )
3ab ab c c a b b a ab c cv v v v           , (11) 

i a i j a jQ D   ,    (12) 

12 ( )j k
i i a j a k a i j a j

i

n n n
n


  
      


, (13) 

 
and subject to the boundary conditions at D , when it is 
a contact surface with some immobile solid 
 

0av   ,       (14) 

0a
ial Q  ,    (15) 

* 0a
i j a j

i

f
l n

n


  


,   (16) 

 
where abp  is the stress tensor, ab  is the static stress 

tensor, ab  is the viscous stress tensor, i is the 
generalized chemical potential of the ith mixture 
component, v  and s  are nonnegative bulk and shear 
viscosity coefficients, respectively, i jD  is the 
nonnegative definite symmetric matrix subject to 

0i j jD m  , al  is the internal normal unit vector at the 

boundary surface D , and ab  is the Kronecker 
symbol. We also note that there is the identity 
b ab i a in    , which reduces to 0b ab   in 

static equilibrium. 
It is possible to derive the differential equation for 

the total energy (that includes both Helmholtz and 
kinetic energy) with energy flux aJ  and dissipation rate 
function  : 

 
1( 2 )t a a a av v J      ,    (17)  

1
2a b b a i j t i a j ab b i i aJ v v v n n v I        , (18)

 
ab a b ia av Q            (19) 

  
In accordance with Eqs. (11), (12), and (22) the 
inequality 0   holds. Also, in accordance with Eqs. 
(14)-(16) the energy flux vanishes at the boundary D :  

0a
al J  . This signifies that in absence of external 

sources and forces the total energy decreases 
1( 2 ) 0a a

D

d
v v dV

d t
     in consistency with the 

second law of thermodynamics. 

2.2 Upscaling to macroscopic transport in porous 
medium: chemical potential drive 
 

Now we consider transition from microscopic DFH 
to macroscopic CPD description of fluid transport in 
porous medium. We use variables related to microscopic 
pore-scale description in parallel to similar variables 
related to macroscopic description. If a  is a microscopic 
variable, then similar macroscopic variable is denoted by 
symbol a  . The latter variable is usually obtained from 
the former by using certain averaging procedure. For 
example, we define component molar density by 

0
( , ) lim ( / )

D

a
i i i D DV

n n t x N V


  , where the pore 

volume DV  is now sufficiently large to contain 
representative piece of saturated porous medium. The 
respective spatial region D  encompasses pores 
belonging to a porous medium region    containing 
both solid skeleton and pores. This porous medium 
region   is supposed to be representative of pore 
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structure in statistical terms but not necessarily identical 
to the neighbor regions of porous medium. This is 
different from homogenization approach with periodic 
geometry of pore system [27].  The volumes of two 
regions D  and   are related by DV V   , where 

( )ax   is porosity. The processes in a porous 
medium are assumed to be sufficiently slow in respect to 
the changing macroscopic component molar densities, so 
that the local distribution of chemical components and 
phases in pores are close to the equilibrium. Therefore, it 
is possible to define the macroscopic Helmholtz energy 
density 

0
lim ( / )
D

D DV
f F V


  as a function of parameters 

in  since the equilibrium state of the mixture is 
determined by the functional (4) together with the 
components conservation condition i D i

D

N n d V  . 

Using f  it is possible to define macroscopic chemical 

potentials i
i

f
n

 



. 

Let us study transport through the spatial 
porous region D. Transport is possible only if there are 
free subregions of the boundary D , which are not 
associated with solid surface. We designate 

f sD   , where f , s  are free and solid 
boundary, respectively.  At the free boundary f  the so-
called free boundary condition for velocity is used in the 
form of 0b

b al v   instead of the no-slip condition in 
Eq. (14) of the DFH. The diffusion transport is generated 
by gradients of generalized chemical potentials a i   
(see Eq. (12)). The convective transport is determined by 
mass velocity, which under current assumptions satisfies 
the reduced momentum equation 

 
b ab i a in    .         (20) 

 
with mixed no-slip and free boundary conditions. In 
terms of differential operations Eq. (20) can be 
represented as follows 
 

ab b a i a iL v n    ,   (21)     
 
where the left side is positive elliptic self-adjoint 
operator in 2 ( )L D  acting on the velocity field. It 
admits the solution with a Green’s function, which can 
also be represented in operator form 
 

( )ab ab
a b i a iv G G n    .       (22) 

 
Here the integral operator in abG  is positive definite, 
and also ab baG G  . Now combining Eqs. (12) and (22) 
we arrive to the expression for the component flux 
generated by the gradients a i 

 
 

( )ab
ia i a i a i j ab i j b jI n v Q n G n D      .  (23) 

 
Averaging Eq. (23) over different cross-sections of the 
region   produces the macroscopic flux of components 
generated by gradients of chemical potentials (Chemical 
Potential Drive or CPD) 
 

ab
i a i a i j b jI I K    ,    (24) 

where the transport matrix ( )ab ab c
i j i jK K x  is positive 

definite and satisfies the symmetry conditions 
ab ba ab
i j i j j iK K K  . The component conservation 

equation together with the CPD transport law in Eq. (24) 
that constitutes the closed formulation of macroscopic 
fluid transport model is as follows

  
( ) 0t i a i an I   .      (25) 

Direct calculations lead to the macroscopic equivalent of 

Eq. (17) 
  

( )t a af J          (26) 

a i aiJ I ,       (27) 

0ai a iI    .      (28) 
 
2.3 Boundary conditions between DFH and CPD 
domains 
 
In highly heterogeneous porous material there can be 
situations when there are adjacent spatial regions where 
one can use alternatively DFH or CPD. It is necessary to 
discuss what boundary conditions should be set at the 
common boundary 1 2D D   between the DFH 
region  1D  and the CPD region 2D . Eq. (16) is still 
valid at   in 1D  , while Eqs. (14) and (15) are not 
because there can be transport of components through 
the boundary. 

One evident boundary condition follows from 
conservation of component fluxes 
 

a a
ai ail I l I .       (29) 

 
The next condition can be derived from energy 
conservation at the boundary  
   

a a
a al J l J .    (30) 

 
Using Eqs. (18), (29), and (30) one can satisfy Eq. (27) 
by imposing boundary condition for chemical potentials 
 

i i im X   ,   (31)

  
where variable X   is determined by the additional 
boundary equation  
 

1
0

2
a a a

a b b a ab bX l v v v l v l v     . (32)
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2.4 Examples of CPD models 
 
For the first example we assume that the porous medium 
is homogeneous and isotropic, and there is single-phase 
single-component flow. In this case the CPD transport 
law is equivalent to the Darcy law (see the last equation 
in (6)) 
  

1
1 1 1 1a a aI K K n p        (33)

 
 
with CPD transport coefficient K  being proportional to 
the absolute permeability k , 2 1

1 sK k n    , where 
coefficient s  is the shear viscosity. 

Second, we consider two-phase two-component 
mixture modeling water and oil. Here we have the 
following definitions 
 

1 w wn s n , 2 (1 )w on s n  ,     (34) 

w w w

w o o cap w

( ) ( )

(1 ) ( ) ( )
if f n s f n

s f n f s

  

 
,    (35) 

w o cap w cap w( ) ' ( )p p p s f s   ,   (36) 
 
where ws  is the water saturation, w w,f p  are the 
Helmholtz energy density and pressure of water, 

o o,f p  are the Helmholtz energy density and pressure 
of oil, and cap w cap w cap w( ) , ( ) ' ( )f s p s f s  are the 
Helmholtz energy density and pressure for capillary 

forces. Eqs. (34)-(36) determine variables w w o, ,s n n  
when variables 1 2,n n  are known. The transport model 
in Eq. (24) is consistent with the generalized Darcy law 
if there are the following additional conditions:  

2 1
12 21 11 w w sw

2 1
22 o o so

0, ,K K K k n

K k n









  


,  (37) 

 
where w o,k k  are water and oil phase permeabilities. If 
conditions in Eq. (37) are not satisfied, CPD model can 
demonstrate some phenomena outside traditional Darcy 
transport. 
 
3 Numerical examples 
 
To demonstrate application of a workflow based on the 
joint DFH modeling within resolved porosity and CPD 
modeling within matrix containing unresolved smaller 
pores (DFH+CPD workflow) we chose a heterogeneous, 
but relatively well characterized chalk sample. The 
sample is grainstone composed of pelloids, skeletal 
grains and ooids. The grains are cemented by equant 
calcite spar cement. Intergranular porosity is the 
dominant pore system, additionally some moldic and 
micropores are present in partially leached grains. Pore 
throats are ranging between approximately 1 and 10 
microns. Pore throat distribution is skewed to smaller 
pore throat sizes. Measured gas porosity of the sample is 
26.2%, and gas permeability is 19.4 mD. 

 

 (a) 

 (b) 
 

 (c) 
Fig. 1. Micro-CT grayscale cross-section of the dry chalk (a) 8 mm mini plug at 2.46 um resolution, (b) a 2.46 mm x 2.46 mm 
fragment of a cross-section at 2.46 um resolution, and (c) a 0.82 mm x 0.82 mm fragment of a cross-section at 0.82 um resolution; 
the dashed line in (a) shows the position of the maximum size parallelepiped model extracted from the mini plug. 
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An 8 mm diameter mini plug was scanned with 
2.46 um per voxel resolution, and a portion of the mini 
plug was scanned with higher resolution of 0.82 m per 
voxel (Fig. 1). 

Two 3D digital rock models (DRM) with these two 
different resolutions were constructed (Fig. 2). Both 
models cover the same spatial region with the size 0.82 
mm x 0.82 mm x 0.82 mm, but they have different 
number of cells (voxels). The high-resolution DRM has 
10003 (1000x1000x1000) cells and the low-resolution 

DRM has 3333 (333x333x333) cells so that the cell sizes 
are 0.82 um and 2.46 um, respectively. In either model 
some portion of pores fell below resolution. However, it 
is evident from Fig. 2 that significantly higher proportion 
of pores remains below resolution in the low-resolution 
DRM than it does in the high-resolution DRM. The data 
on the resolved and unresolved porosity is shown in 
Table 1. 

 

(a)  (b) 
Fig. 2. 3D view of the pore space of the (a) high-resolution 10003 and (b) low-resolution 3333 DRMs. The resolved pores are shown 
in green, the unresolved pores (subresolution matrix) are shown in red, and the skeleton is made transparent. 
 

Table 1. The portion of resolved porosity and unresolved 
porosity (subresolution matrix) within digital rock models of 

different spatial resolution. 
 

Model Resolved porosity Subresolution 
matrix 

10003, 0.82 um 0.166 0.073 
3333, 2.46 um 0.091 0.157 

 
In addition to X-ray micro-CT, we have done scanning 
electron microscopy (SEM) of parts of the sample to 
reveal the pores below micro-CT resolution down to 50 
nm. Using both micro-CT high-resolution (0.82 um) and 
SEM data we performed digital modeling of MICP 
experiment and reconstructed pore throat size 
distribution that is compared to the standard 
experimental MICP measurements in Fig. 3. The two 
curves in Fig. 3 match well meaning that most of the 
controlling pore throats have been adequately resolved 
on the corresponding scales. 

In modeling on the high-resolution DRM, we 
assumed that the subresolution matrix portion of the 
model is effectively impermeable for oil at relevant oil-
water capillary pressure levels so that only the DFH 
equations need to be solved within the resolved pore 
space. On the other hand, in modeling on the low-
resolution DRM, we assumed that the subresolution 
matrix is permeable and therefore the full DFH+CPD 
simulation needs to be done. To set up a single-phase 
DFH+CPD simulation it is necessary to provide absolute 

permeability in the subresolution matrix cells so that the 
single-phase CPD transport law given in Eq. (33) could 
be resolved. In order to do this, we first simulated single-
phase flow on the high-resolution DRM to obtain 
velocity distribution (Fig. 4a). 
 

 
Fig. 3. Reconstructed numerically from the micro-CT and SEM 
data (green curve) and obtained from the MICP measurements 
(blue curve) pore throat size distributions. 
 
Then, by interpreting the simulation results in terms of 
Eq. (33) and linking them with the gray scale distribution 
from the high-resolution images such as those shown in 
Fig. 1c, we established a correlation between the gray 
scale and absolute permeability values. We then applied 
the same correlation to the low-resolution gray scale 
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images to inform the low-resolution DRM about the 
subresolution matrix permeability. The velocity 
distribution obtained on this 3333 low-resolution DRM is 
presented in Fig. 4b. The absolute permeabilities 
calculated on the high- and low-resolution DRMs are 
17.3 mD and 18.2 mD, correspondingly. 

The next step was simulating two-phase flow and 
the steady-state relative permeability experiment. The 
two immiscible phases were assumed to be water and oil 
with the properties as follows: 3

w 1000kg/m  , 
3

o 800kg/m  , sw 0.001Pa×s  , so 0.004Pa×s  , 

ow 0.03N/m  , where w o,   are the water and oil 
mass densities, sw so,   are the water and oil viscosities, 
and ow  is the oil-water interfacial tension. Since the 
sample is carbonate, it was assumed that it has mixed 
wettability. To model this, we first injected oil into 
initially water-wet 100% water saturated high-resolution 

DRM using our standard DFH workflow [11, 14-17, 19-
21]. (In all cases here and below injection was arranged 
in direction from bottom to top as shown in the 3D 
views.) Then at those places where oil touched the pore 
walls we switched wettability to moderately oil-wet 
while leaving the untouched pore walls water-wet. In 
this way most of the smaller pores as well as the pores 
isolated by thin pore throats remained water-wet, while 
the larger pores attained wettability towards oil. The 
distribution of water and oil at the residual water 
saturation state is shown in Fig. 5a. Using the obtained 
mixed-wet wettability distribution we simulated the 
steady-state relative permeability experiment by 
injecting oil and water mixture in several steps different 
in water content in the influx; at the final step, with only 
water injected, the residual oil saturation was obtained 
(Fig. 5c). 
  

 

(a)  (b) 
 
Fig. 4. 3D view of the velocity absolute value distribution in (a) the high-resolution 10003 DRM and (b) the low-resolution 3333 
DRM of the same location within the core. The shown distribution was scaled to the [0; 1] range. The velocity corresponds to flow in 
vertical (z) direction. 
 

(a)   (b) 
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(c)  (d) 
Fig. 5. 3D view of the distribution of water and oil in the high-resolution DRM (left column) and the low-resolution DRM (right 
column) at the initial conditions corresponding to the residual water saturation (a, b), and the final state corresponding to the residual 
oil saturation (c, d). Water is shown in semitransparent blue, oil is shown in red, and skeleton is completely transparent. 
 

To run DHD+CPD two-phase simulation, it is 
necessary to provide CPD transport matrix of Eq. (24) in 
subresolution matrix cells. Alternatively, when dealing 
with immiscible phases like oil and water that are each 
described by just one pseudo-component, it is possible to 
use simplified CPD transport model provided in Eq. (37) 
and based on the concepts of absolute and relative 
permeabilities and capillary pressure. We already 
discussed how absolute permeability was assigned to the 
subresolution matrix cells of the low-resolution DRM. 
The relative permeability was assigned in a similar way 
since all the velocity distribution, pressure, and water 
saturation for the subresolution matrix cells are known 
from the simulation on the high-resolution model. The 
capillary pressure function was constructed using the 
Young-Laplace equation and then scaled to the pore size 
distribution correlated by the gray scale values. 

The distributions of oil and water obtained in 
simulation of the two-phase steady-state relative 
permeability experiment modeled using the DFH+CPD 
workflow on the low-resolution DRM are presented in 
Fig.5b,d. The chart in Fig. 6 compares the relative 
permeability curves obtained on both high- and low-
resolution DRMs. 

The final example we wish to present here is the 
simulation of both absolute and steady-state relative 
permeabilities on another low-resolution DRM with the 
size of 4.92 mm x 4.92 mm x 2.46 mm approximated 
with 500 x 500 x 250 cells with the cell size of 9.84 um. 
This model covers maximum size parallelepiped that can 
be extracted from the micro-CT scans of the 8 mm mini 
plug as shown by the dashed line in Fig. 1a. All of the 
parameters necessary to set up the DFH+CPD model 
were taken from the previous calculations on the high-
resolution DRM as described previously. 

 

 
Fig. 6. Comparison of the simulated steady-state relative 
permeability curves obtained on the high-resolution (orange 
and blue curves) and low-resolution (yellow and gray curves) 
DRMs of the same spatial region within the sample. 

 
Simulated absolute permeability of this model is 

19.8 mD. The distributions of water and oil 
corresponding to the residual water saturation and 
residual oil saturation as obtained during the steady-state 
relative permeability simulation are shown in Fig. 7. The 
simulated relative permeability curves are presented in 
Fig. 8. 

In this work, the simulation results were interpreted 
in consistency with the conditions in Eq. (37) that is with 
the traditional Darcy transport. However, in complex 
fluid problems deviations from relative permeability 
concept are expected, which then must be treated in the 
frame of the wider CPD model. 
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(a) (b) 
Fig. 7. 3D view of the distribution of water and oil in the upscaled low-resolution DRM at (a) initial conditions corresponding to the 
residual water saturation, and (b) final state corresponding to the residual oil saturation. Water is shown in semitransparent blue, oil is 
shown in red, and skeleton is transparent. 
 

 
Fig. 8. Simulated steady-state relative permeability curves 
obtained on the upscaled low-resolution model. 

2 Conclusion  

We developed a new digital rock workflow applicable 
for simulation of multiphase flow on multiscale models 
representing heterogeneous core samples. The workflow 
called DFH+CPD is based on solving the standard DFH 
equations within resolved porosity and solving the new 
CPD equations within unresolved porosity or 
subresolution matrix. The CPD equations are derived in 
mathematically rigorous way from the DFH equations 
averaged over statistically representative ensemble of 
pores. The new workflow amounts to an effective 
upscaling procedure allowing multiphase simulation on 
coarse resolution digital rock models that include 
information that can be obtained on high-resolution 
models. The DFH+CPD workflow was implemented 
within the Schlumberger DHD simulator. 

 To validate the new workflow, we compared 
absolute and steady-state relative permeabilities 
simulation results on the high-resolution model and the 
low-resolution model of the same region within the 
heterogeneous carbonate core. Then we demonstrated 
simulation of the steady-state relative permeabilities on 
the upscaled digital rock model that covers almost entire 
8 mm mini plug. 

We thank Schlumberger for permission to publish this work. 
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