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Abstract. For distribution systems where wind sources are poor, low-wind-speed wind turbines (LWTG) 
plays an important role in improving the security, economy and reliability of the system. However, the 
stochastic volatility of LWTG output and loads poses a challenge to the technology of distribution network 
reconfiguration. Considering the uncertainty of LWTG output, photovoltaic output and changes of load in 
multiple continuous periods, a dynamic robust reconfiguration model is established.  The optimization 
target is to minimize the three-phase current unbalance and network loss. The model solving process 
combines the Latin hypercube sampling-based Monte Carlo method, the Semi-invariant method and the 
compound differential evolution algorithm. The influence of LWTG on the reconfiguration results is 
explored based on the modified IEEE34-node simulation system, and the performance of the proposed 
dynamic robust reconfiguration method is then verified. 

1 Introduction  
Distribution network reconfiguration (DNR) can be 
static or dynamic. The main difference is that the 
dynamic distribution network reconfiguration (DDNR) 
takes into consideration the time-varying nature of loads 
[1]. Some researches have been done on static 
distribution network reconfiguration (SDNR) from the 
perspective of strategy improvement and solving 
algorithm [2-9]. However, with the loads of distribution 
network varying, SDNR cannot guarantee the optimal 
operation economy of the network since only a single 
time section is considered. Thus, DDNR has received 
extensive attention [1,10-14]. 

In addition, with the large-scale access of distributed 
generation (DG) such as wind power and photovoltaic, 
the operation reliability and economy of the distribution 
network have been significantly improved. However, the 
high randomness and volatility of DG bring a challenge 
to the technology of distribution network reconfiguration, 
and the traditional method is no longer applicable [15-
16]. At the present stage, it is not only necessary to carry 
out reasonable modeling of the randomness of DG, but 
also to involve the changes of load in multiple 
continuous periods [1], so as to achieve dynamic robust 
reconfiguration with global optimization. 

On one hand, the uncertainty of DG output is very 
important for DNR. Once ignored, the random change of 
DG output will inevitably affect the reconfiguration 
results since DG output is generally regarded as negative 
loads. To fully include the uncertainty of the DG output 

and load into DNR, the following two methods can be 
adopted. In Ref.[17], loads, the power generation profile 
of wind turbines and solar photovoltaic panels are all 
characterized by curves while in Ref.[18-19], they are all 
presented by probability models. Then Ref.[18] applies 
probabilistic energy management to probability power 
flow and Ref.[19] utilizes the Monte Carlo (MC) 
simulation to obtain the probabilistic power flow 
calculation results.  

On the other hand, the changes of load in multiple 
continuous periods ought to be involved in DDNR. On 
the basis of that, Ref.[11] aims at power loss reduction 
and voltage profile enhancement and an adaptive 
quantum particle swarm optimization (AQPSO) 
algorithm is used to obtain the optimal configurations. 
Nonetheless, the process of DNR is performed without 
DG. In Ref.[10], although DG is involved and the goal is 
to maximize the overall amount of DG, the uncertainty 
of the DG output is ignored. Aiming at reducing network 
loss and increasing voltage amplitude, and considering 
the uncertainty of DG output, the dynamic robust 
reconfiguration is realized in Ref.[1,12-14], which is 
more inconsistent with the actual operation of 
distribution networks. 

However, the above literatures are all based on the 
three-phase balance of distribution network, whereas the 
actual distribution systems are inherently unbalanced 
with unbalanced three-phase loads and line parameters, 
especially for medium and low voltage systems [6,20]. 
This has a significant impact on the voltage, current level 
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and network loss, so it is necessary to take three-phase 
unbalance into account in DNR. 

Moreover, with the development of low-wind-speed 
technology, it becomes a trend that low-wind-speed wind 
turbines (LWTG) are integrated into distribution 
networks with poor wind sources. It is worth studying 
whether the dynamic robust reconfiguration results of 
distribution networks will be affected by the 
participation of LWTG.  

In conclusion, this paper aims to explore the method 
of dynamic robust reconfiguration of three-phase 
unbalanced distribution network involving LWTG. The 
remainder of this paper is organized as follows. Section 
II establishes the probability models of low-wind-speed 
wind power, photovoltaic output and loads. Section III 
establishes the dynamic robust reconfiguration model 
aiming at minimizing three-phase current unbalance and 
network power loss. Section IV describes the solution 
algorithm for the optimization objectives and constrains. 
In section V, the influence of LWTG on the results of 
DNR is explored and  the effectiveness of the proposed 
model and solution method are verified in a modified 
IEEE 34 node system. Section VI draws a conclusion. 

2 Modeling of Distribution Network 
Uncertainty  

2.1 LWTG Output 

In areas with poor wind resources, the wind speed is low, 
and the volatility is large. Therefore, wind speed cannot 
be simply described by normal distribution or skewness 
distribution. The two-parameter Weibull distribution is 
used herein, which is the most suitable for wind speed 
statistics. The probability density function is described as 
[19]： 
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where, v is the wind speed; k and c are shape parameters 
and scale parameters of Weibull distribution, 
respectively, and they can be approximated with average 
wind speed and standard deviation [19]. 

When the distribution of wind speed is known, the 
probability distribution of wind power output can be 
obtained through the active power-wind speed relation 
curve of wind turbine. Different from ordinary wind 
turbine generators (WTG), LWTG is characterized by 
large rotor diameter, lower cut-in wind speed, lower 
rated wind speed and larger power generation in the low-
wind-speed zone. The differences in parameters of the 
two types of WTGs adopted in this paper are shown in 
Tab.1. These differences lead to differences in the active 
power-wind speed relation curves, as shown in Fig.1. 

It can be seen that, compared with ordinary WTG, 
LWTG has a steeper curve of active power-wind speed 
relation, so they can output more active power under the 
same wind condition in low-wind-speed zone. 

Table 1. Part of the parameters of wind turbine 

WTG 2MW ordinary 
WTG 2MW LWTG

Rotor diameter 90m 115m 

Cut-in wind 
speed 

4m/s 3m/s 

Rated wind 
speed  

12m/s 9.1m/s 

Cut-out wind 
speed 

25m/s 25m/s 
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Fig. 1. Curve of active power-wind speed. 
 

Since generally wind speed is maintained between the 
cut-in wind speed and the rated wind speed for most of 
the time, the relationship between active power and wind 
speed can be approximated as a linear function. Thus, 
the probability density of the active power can be 
described as [19]: 
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where Pw is wind power output; k1 and k2 satisfy Eq.(3): 
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where Pr is rated output of wind turbine; vcut-in and vr are 
cut-in wind speed and rated wind speed, respectively. 

If WTG is simplified as a PQ node and assuming that 
the power factor is constant, then the reactive power 
output is: 

 ϕtan/ww PQ =  (4) 
where φ is the power factor angle. 

Eq.(2) is a typical three-parameter Weibull 
distribution. According to the relationship between the 
distribution characteristic function and moments, the r-th 
moment of the distribution is [21] : 
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where Γ is the Gamma function. 
The semi-invariants of each order of active power 

output of WTG can be obtained according to the 
relationship between semi-invariants and each order 
moment [22]. Also, the semi-invariants of each order of 
reactive power output can be obtained according to 
Eq.(4). 
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2.2 Photovoltaic Power Generation System 

The magnitude of photovoltaic output is directly related 
to the solar irradiance, which is approximately subject to 
Beta distribution. The probability density function of 
photovoltaic output can then be deduced from the 
probability density function of solar irradiance [19]: 
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where α and β are shape parameters of Beta distribution; 
RM meets Eq.(7): 

 maxM rAR η=  (7) 
where A is the total area of photovoltaic cell array; η is 
the total photoelectric conversion efficiency; rmax is the 
maximum solar irradiance. 

The k-th moment of Beta distribution is: 
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The semi-invariants of each order of photovoltaic output 
can be obtained according to the relationship between 
the semi-invariants and each order moment. 

2.3 Load Modeling 

The uncertainty of loads can be approximated by normal 
distribution. Suppose that the mean value and standard 
deviation of active or reactive load are μL and σL, 
respectively, then the semi-invariants of each order are: 
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3 Dynamic robust reconfiguration 
model of distribution network  

3.1 Objective Function 

Unbalance of three-phase loads will have a significant 
impact on the overall optimization and reconfiguration 
of distribution network [20]. In this paper, considering 
the uncertainty of low-wind-speed wind power, 
photovoltaic output and loads, the minimum three-phase 
current unbalance is taken as the optimization objective, 
along with the minimum network power loss. 

1) Three-phase current unbalance. In order to obtain 
three-phase current unbalance at the transformer outlet 
side, it is necessary to first obtain the branch current and 
node voltage of each phase before and after 
reconfiguration. 
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where the subscript i represents the number of nodes; 
superscript t and ^ represent the sampling time and 

conjugate operation respectively; Φ represents phase (Φ 
=A, B, C); U, I and S represent voltage, current and load 
power respectively; BI and BZ represent the branch-node 
association matrix and the branch-impedance matrix 
respectively. 

Then the three-phase current unbalance at the outlet 
side of the transformer is: 
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where Dt,Φ is the three-phase current unbalance of a 
certain phase at time t; I1 is the outlet side current of 
transformer; Iav is the average current; Subscripts A, B 
and C represent three phases respectively. 

Under the premise of continuous time-varying load, 
the three-phase current unbalance can be expressed as: 
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where D is the overall three-phase current unbalance 
during the reconfiguration period; T is the total number 
of time periods. 

2) Network power loss. As an important index of 
distribution network economic operation, network loss is 
necessary to be included in the objective function. 
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where i and j are node numbers; ΩB is the branch set; rij 
is the resistance of branch ij; Φ represents phase. 

3.2 Constraints 

1) Power flow equation constraint 
Linear power flow equation of three-phase unbalanced 

distribution network with radial operation is as follows: 
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where ΩB、ΩF、ΩDG are collection of branches, root 
nodes, DG nodes ,respectively; Pki, Pfi and Pgi are the 
three-phase active power flowing to node i from node k, 
f and g, respectively. Pij is the three-phase active power 
flowing from node i to node j; Pli is the three-phase 
active load of node i; Qki, Qfi and Qgi are the three-phase 
reactive power flowing to node i from node k, f and g, 
respectively. Qij is the three-phase reactive power 
flowing from node i to node j; Qli is the three-phase 
reactive load of node i; Ui is a 3×1 dimensional column 
vector formed by the square of voltage amplitude of each 
phase of node i. Sij is a 3×1 dimensional column vector 
composed of power of each phase on branch ij. 
Superscript ‘*’ denotes conjugate operation; eij is a 3×1 
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dimensional column vector composed of {0,1}, 
reflecting the corresponding phase of the line. zij is a 
binary variable, representing the starting state of branch 
ij, which equals 1 when the branch is switched in. Zij is 
three-dimensional branch impedance matrix which 
satisfies the following equation: 
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2) Network topology constraint. 

 Gg t ∈  (16) 
where gt is the distribution network topology at time t; G 
is the collection of all radial topologies. 

3) Constraint of switch operation times. 
As too many times of action of the ties switches 

during reconfiguration will rapidly shorten the service 
life of the device, it is necessary to set the following 
constraint. 
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where △zt ij represents the number of switching actions 
at time t relative to time t-1; SWmax represents the upper 
limit of the number of switching actions. 

4) Chance constraint of node voltage. 

 { } ui
t

ii VVVP βφ ≥≤≤ max,min
 (18) 

where P{} represents probability; Vmax i and Vmin i are 
the upper and lower limits of voltage amplitude at node i 
respectively; βu represents the confidence level of the 
voltage constraint. 

5) Chance constraint of branch current. 
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(19) 
where Pt ij represents the transmission power of branch 
ij at time t; Pmax ij is the maximum transmission power 
of branch ij; βI is the confidence level of branch current 
constraint. 

4 Model Solving 

4.1 Probability Power Flow Calculation 

The traditional power flow calculation is gradually 
replaced by probability power flow for not being able to 
deal with the high randomness of renewable energy and 
loads [18-19]. Analytical method and simulation method 
are two main methods for calculating probability power 
flow. Analytical method mainly includes semi-invariant 
method and point estimation method, and simulation 
method mainly includes the Monte Carlo (MC) method. 

MC method based on Latin hypercube sampling 
(LHS-MCS) [23] is adopted to solve the probability flow 
when calculating the objective function. To solve the 
chance constraints considered in this paper, the semi-
invariant method can be used to solve the probability 

power flow [24] to ensure the accuracy of calculation 
and save time.  

The process of solving objective function and chance 
constraints with probability power flow calculation is 
shown in Fig.2, in which NLHS is the sampling times of 
Latin hypercube sampling. 

1) Import distribution network parameters.
2) Import  probability characteristic parameters of load, 

wind speed and solar irradiance.
3) Import  switch scheme of DNR.

Perform the LHS sampling of load, wind 
speed and solar irradiance to form the 

sample matrix SLHS

Take a set of sampled data by column 
from SLHS and substitute them into the 
Power flow equation to calculate the 

three-phase current imbalance degree Di 
and the power loss PLoss,i（i=1,2,...NLHS）

Calculate the probability distribution of 
power flow results to obtain the 

expectation of D and PLoss 

Calculate the expectation of node voltage X0,  
the expectation of branch power flow Z0 and the 

sensitivity matrix by N-L method

Calculate the eighth-order semi-invariants of 
load, wind speed and solar irradiance 

 Modify the eighth-order semi-invariants of the 
injected power of the node

Calculate the eighth-order semi-invariants of 
node voltage and state variables of branch power 

flow △X and △Z using the sensitivity matrix

Obtain the probability distribution function of 
△X and △Z by Gram-Charlier series expansion

Determine whether the opportunity constraints 
are satisfied and add them to the objective 

function in the form of penalty term

Fig. 2. The flow chart of probability load flow calculation. 

4.2 Topology Constraint Processing Based on 
Graph Theory 

The topology constraint is solved by the method 
proposed in literature [10]. The algebraic connectivity in 
graph theory is applied to determine whether the network 
topology satisfies the radial constraint. Firstly, the 
adjacency matrix A(G) of the distribution network is 
constructed: 
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(20) 

where G is a simple graph which represents the 
distribution network; aij equals 1 when node i is adjacent 
to j, otherwise, it equals 0; M is the number of nodes. 

The network topology satisfies the following 
conditions: 

 1))((rank −= MGL  (21) 
where ‘rank’ represents the rank of matrix; L(G) is the 
Laplace matrix of G. 

4.3 DNR Based on CDE 

The compound differential evolution (CDE) is a simple 
and efficient intelligent population optimization 
algorithm for DNR. This algorithm has the 
characteristics of fast convergence and good robustness. 
Typical differential evolution (DE) algorithms include 
operations such as variation, crossover, and selection. 
There are two types of mutation strategies [25] : 1) 
random selection of individuals as mutation basis vectors, 
such as the DE/rand/1 model; 2) select the current 
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optimal individual as the mutation basis vector, such as 
the DE/best/1 mode. However, there are contradictions 
between optimization speed and depth in both strategies, 
which can be well solved by CDE. The flow chart of 
CDE is as follows. 

Start

1) Import distribution network parameters.
2) Import  probability characteristic parameters of load, 

wind speed and solar irradiance.
3) Import  switch scheme of DNR.

Set the maximum number of iterations, Gmax appropriately.

Set the evolution generation, g=0.
Calculate the objective function values of each 

individual in the initial population.

 Rank all individuals according to fitness

Divide the population into superior community, Cg and 
inferior community, Cb according to the order of individual 

superiority and inferiority

Evolving and updating superior 
community Cg in accordance with 
the DE/rand/1 mutation strategy

Evolving and updating inferior 
community Cb in accordance with 
the DE/rand/1 mutation strategy

Population restructure.
Set C=Cg∪Cb and calculate the objective function values of each 

individual in the new population C

g=Gmax?g=g+1

End

Fig. 3. The flow chart of CDE algorithm. 

5 Case Study 
In order to verify the effectiveness of the dynamic robust 
reconfiguration strategy mentioned above, simulation is 
carried out in a modified IEEE34 node system shown in 
Fig.4. The number of branches is 38 (5 link branches) 
and the initial state of the link branches are disconnected. 
Four types of loads are considered, namely civil load, 
tertiary industry load, heavy industry load and light 
industry load. The proportion of each type of load is set 
according to user behavior habits, as shown in Fig.5. 
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Fig. 4. Modified IEEE34 system. 
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Fig. 5. Curve of load. 

In this paper, a LWTG and a large number of 
photovoltaic elements, of which the rated power are both 

2MW, are integrated to node 33. It is assumed that the 
wind energy utilization coefficient of LWTG is 0.5 and 
the photoelectric conversion efficiency is 13%. Wind 
speed data is derived from the annual measured wind 
speed data of a certain area, with an average of 6.325m/s 
and a standard deviation of 1.9. Solar irradiance data are 
obtained by HOMER software, with an average value of 
0.15W/m2 and a standard deviation of 0.05. 

The electricity price per unit, qP is set as 54.6 dollars 
per kilowatt hour, and the switch action cost qRC is set as 
30 cents per time. The confidence level βu of node 
voltage constraint and the confidence level βI of branch 
power flow constraint are both 0.95. The upper and 
lower limits of node voltage are 1.05 and 0.90p.u 
respectively, and the upper limit of branch power flow is 
3.6MW. The dynamic robust reconfiguration scheme 
obtained through simulation is shown in Tab.2. 

Table 2. Results of dynamic robust reconfiguration 

Time Switch Number Time Switch Number 

1 4-5-10-28-38 13 34-5-11-27-19 

2 5-8-10-37-19 14 34-5-10-28-38 

3 5-6-10-28-17 15 3-9-10-37-28 

4 3-7-9-15-38 16 34-5-36-15-38 

5 3-6-13-30-19 17 6-8-13-12-18 

6 6-5-11-14-19 18 3-5-9-14-18 

7 3-5-36-28-19 19 3-5-9-15-27 

8 5-7-12-14-19 20 4-9-13-37-28 

9 34-7-13-14-16 21 34-7-9-30-18 

10 4-6-12-28-27 22 6-8-10-15-16 

11 4-6-9-14-38 23 5-35-9-13-17 

12 6-9-36-28-17 24 3-6-9-28-38 

5.1 Influence of Wind Power Output on DNR 

The characteristics of LWTG enable it to output more 
active power than ordinary WTGs at the same wind 
speed. However, will the extra active power affect the 
results of dynamic robust reconfiguration? Further 
investigation is necessary. 
When the wind power output increases, the equivalent 
injection power of the point of common coupling (PCC) 
of LWTG increases, resulting in the reduction of the 
branch current connected with the PCC point. Then the 
network power loss will inevitably decreases with the 
decrease of the branch current. However, according to 
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(11), the three-phase current unbalance may increase or 
decrease. 

For further investigation, the network reconfiguration 
scheme at a certain moment in Tab.2 is randomly 
selected for simulation. The expectation of three-phase 
current unbalance and network loss are studied, 
comparing two cases when ordinary WTG and LWTG 
are integrated to the distribution network with the same 
capacity under different wind speeds, as shown in Fig.6. 
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(b) Expectation of power loss under different wind speeds 
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(c) Expectation of three-phase current unbalance under 

different wind speeds 
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(d) Expectation of power loss under different wind speeds 

Fig. 6. Expectation of three-phase current unbalance and power 
loss under different wind power output. 

Fig.6 reflects the difference between LWTG and 

ordinary WTG on the active power-wind speed relation 
curve as Fig.1 shows. When the wind speed increases, 
LWTG is easier to achieve larger active power output (in 
advance) than ordinary WTG. This feature of LWTG 
leads to smaller expectations of three-phase current 
unbalance and network under low wind speed wind 
condition (3-7m/s). As shown in Fig.6, the curve trend of 
the two types of WTG is roughly the same. But it is 
obvious that in the case of LWTG, the corresponding 
curve value is lower. Therefore, LWTG has an important 
impact on DNR, and can improve the safety and 
economy of distribution network to a certain extent. 

5.2 Analysis of Dynamic Robust 
Reconfiguration Results 

In order to further verify the effectiveness of dynamic 
robust reconfiguration results with LWTG, four 
scenarios are explored, including (1) before 
reconfiguration; (2) dynamic deterministic 
reconfiguration, which denotes that load conditions, 
wind power output and photovoltaic output are constant; 
(3) dynamic robust reconfiguration with ordinary WTG 
integrated; (4) dynamic robust reconfiguration with 
LWTG integrated. Based on the aforementioned LHS-
MCS, semi-invariant method and CDE algorithm, the 
scheme of DNR under each scenario is obtained. Table 3 
lists the expectation of three-phase current unbalance, 
network loss expectation and the average branch current 
of each phase under four scenarios after applying the 
corresponding DNR schemes. 

Comparing Scenario 1 and 4, it can be concluded that 
dynamic robust reconfiguration LWTG can significantly 
reduce the expectation of three-phase current unbalance 
and network loss. Although there is still a small amount 
of unbalance in the three-phase current, the average 
value of branch current decreases significantly, reducing 
the expected network loss by 96.7% and greatly 
enhancing the operation economy of the distribution 
network. 

From Scenario 3 and 4, it can be seen that, compared 
with ordinary WTG, the characteristics of LWTG can 
reduce the expectation of three-phase current unbalance 
by 6.3% and the expectation of network loss by 25.6% 
after dynamic robust reconfiguration. This is because 
LWTG outputs more active power, which reduces the 
average branch current. 

Comparing Scenario 2 and 4, it is obvious that the 
randomness and volatility of load, wind speed and 
photovoltaic output have significant influences on the 
dynamic reconfiguration. Compared with the 
deterministic reconfiguration strategy, the robust 
reconfiguration strategy can reduce the expectation of 
three-phase current unbalance by 7.6% and the network 
loss expectation by 25.8%. 

To further observe the node voltage unbalance, Fig.7 
shows the distribution of node voltage expectation of 
each phase in four scenarios.
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Table 3. Comparison of several indicators of distribution network under different scenarios 

Scenarios 
Expectation of three-

phase current 
unbalance 

Expectation 
of power loss 

(KW) 

Mean value of branch current (A) 

Phase A Phase B Phase C 

1. Before DNR 13.53 6560 11.22 9.64 4.94 
2. Dynamic deterministic 
reconfiguration (with LWTG) 8.88 292.2 6.17 6.95 4.89 

3. Dynamic robust reconfiguration  
(with ordinary WTG) 8.76 291.6 6.03 6.87 4.83 

4. Dynamic robust reconfiguration 
(with LWTG) 8.21 216.9 5.98 6.81 4.82 
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(a) Node voltage distribution of each phase in scenario 1 
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(b) Node voltage distribution of each phase in scenario 2 
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(c) Node voltage distribution of each phase in scenario 3 
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(d) Node voltage distribution of each phase in scenario 4 

Fig. 7. Node voltage distribution of each phase. 

 
It can be seen from Fig.7 that in scenario 1 (before 

reconfiguration), the node voltage of each phase is 
obviously unbalanced, and the maximum voltage 
difference reaches 0.2396p.u. The voltage unbalance in 
scenarios 2, 3 and 4 is significantly reduced and the 
voltage amplitude is increased, which indicates that the 
power flow distribution of the reconfigured distribution 
network has been optimized and the node voltage 
constraint has been satisfied. 

The maximum voltage difference of scene 2, 3 and 4 
is 0.0965p.u, 0.0908p.u and 0.0579p.u, respectively. 
Conclusion can be drawn that the participation of LWTG 
significantly improves the overall voltage distribution of 
the distribution network, and the improvement effect is 
the best in all scenarios. 

6 Conclusion 
In this paper, the method of dynamic robust 
reconfiguration of a three-phase unbalanced distribution 
network with LWTG integrated is studied. Considering 
the uncertainty of wind power, photovoltaic output and 
loads, it has been proved that for a distribution network 
under low wind speeds, compared with connecting 
ordinary WTGs, the integration of LWTGs will decrease 
the expectation of three-phase current unbalance and 
network loss, which greatly improves the safety and 
economy of distribution network operation. In addition, 
the proposed DNR scheme can significantly reduce the 
node voltage unbalance and improve the overall voltage 
level of the distribution network. 
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