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Abstract. Algorithms for fast and superfast solvers of large systems of linear algebraic equations, used in 
solving mathematical problems of electric power industry, are proposed. These algorithms are constructed 
based on a novel method of multistep decomposition of a multidimensional linear dynamic system. 
Examples of the analytical synthesis of iterative solvers for matrices of the general form and for large 
numerical systems of linear algebraic equations are presented. 

1 Problem description 
One of the central objects in linear algebra is a large 
system of linear algebraic equations (SLAEs) 

        Ax = b,                 (1) 

where  � ∈ ��×� – Jacobi matrix of size n×n, � ∈ �� – 
previously given vector of dimension n. Here and 
below, F denotes either the field of real numbers R 
or/and the field of complex numbers C. 
There is a large number of iterative methods and 
software packages of iterative solvers designed for 
system of linear equations Eq (1). However, these 
methods are effective under fairly strong conditions on 
the properties of the matrix А, among which there are 
cyclicity, symmetry, and positive definiteness [1–3]. 
Furthermore, no iterative solvers that could solve the 
equations with the general matrix А. are known. For 
example, the methods based on Krylov’s subspaces, 
such as the conjugate gradient method or the 
generalized minimal residual method of order r 
GMRES(r), demonstrate good global convergence for 
positive definite and normal matrices [1]. In the 
absence of the normality property of the convergence 
condition become fairly complex, maybe even chaotic, 
and they are poorly understood. For example, in [4] 
one can find examples of simple equations (1), for 
which the iterations of GMRES(1) converge rapidly 
reaching an accuracy 10–15, while the error of the 
process GMRES(2) demonstrates chaotic behavior 
within the range 0,1…1.  
The aim of this work is to develop fast and superfast 
iterative solvers based on a novel method of multistep 
decomposition and synthesis of control of a 
multidimensional dynamic system [5] for SLAEs. 
These solvers must ensure rapidly converging iterative 
processes in numerical computations. In other words, 

we want these iterative solvers to be stable and 
converging within several first iterations independently 
of the properties of the matrices in the SLAEs. The 
minimization of algorithmic complexity is not 
considered here. 

2 Analysis of iterative solvers based 
on control theory 
Parameters of iterative solvers, such as shift, 
relaxation, etc., can be considered as controls, and the 
solvers themselves can be considered as controlled 
dynamic systems. One of the first approaches in this 
direction can be found in the early book by Bellman 
[6]: «…We have already referred to the fact that 
computing can be considered to be a control process in 
which we want to blend complexity, time, and 
accuracy in some appropriate way. It should, in 
addition, be treated in many cases as an adaptive 
control process in which the results of the previous 
calculation are used to guide the subsequent 
calculations, producing not only a choice of parameters 
but a choice of algorithms. » 
In recent times a number of numerical algorithms have 
been studied from the viewpoint of stabilization of 
dynamic systems using feedback control synthesis. 
Within this direction of research, [1] cites the papers  
[7, 8], where the choice of the step  
size in ODE-solvers was improved by finding an 
appropriate control. In [9–11] , the concept of 
controllability was applied to finding eigenvalues 
matrix pencils and solvers of linear matrix equations 
(1).  
In [12,13] methods of the robust stability theory were 
used to optimize an SLAE solver. 
Let us consider some popular iterative solvers for the 
linear matrix equation (1), based on the simple iteration 
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(Richardson’s) method and the methods of polynomial 
and linear iteration [1].
For invertible matrix A Eq.(1) has the well-known 
solution 

                                     x = A��b (2) 

The iterative solver based on Richardson’s method can 
be classified as a discrete bilinear control system with a 
single input and multiple outputs (SIMO), defined over 
Fn: x	
� = x	 + u	(b − Ax	), x� ∈ F�         (3) 

Here � – is the control parameter (scalar control) and x� – is the initial condition. The fixed (steady) point in 
n-dimensional space of this iterative process is solution 
(2) to the linear equation (1).
Various strategies for � and certain families of 
matrices were proposed [14, 15]. In particular, for � =  = const the discrete system (3) has a steady-
state value (is asymptotically stable), if the set of 
eigenvalues (denoted by) of the matrix E� − A, where E� – is the identity matrix of order n, is within the unit 
circle on the complex plane, i.e.∀� ∈ eig(E� −A), |�| < 1.  
If � is a feedback control, then � = ��∗ ���‖���‖�, e� = b −Ax�, where e� – is the current residual, then   This 
approach is used in the method GMRES(1). It is known 
that the dynamic system(3) with this control – is 
asymptotically stable and the iterative process 
converges if the matrixA + A∗ ≻ 0 is positive definite. 
Clearly, this condition is not satisfied for arbitrary 
matrices. 
In [13], an alternative to the discrete SIMO- system (3) 
was proposed in the form of a multi input multi output 
(MIMO) linear system: 

          x	
� = (E� − A)x	 + Gu	 + b, x� ∈ F�, (4)

where is a given matrix that generally is not directly 
related to The asymptotic stability and, therefore, the 
convergence of the iterative process (4) can be ensured 
using the feedback control 

                                       u� = Kx�,                          (5) 

that can be designed by linear-quadratic optimization. 
This yields the known LQRES [1] solver. 

3 Controllability of iterative solvers 
It is known that a necessary and sufficient condition for 
the efficiency of feedback control (5) is the complete 
controllability condition of the dynamic system [6]. In 
[1], the controllability of the iterative solver based on 
Richardson’s method (3) was analyzed. It was shown 
that, for every input sequence (�), the trajectory of 
the state (x�) converges to the solution of Eq. (2), if 
and only if the sequence of residuals 

                           e	
� = (E� − u	A)e	,              (6)

converges to zero. Thus, the dynamics of the discrete 
system (3) is equivalent to the dynamics of (6). 
The iterative solver (3) based on Richardson’s method 
is completely controllable, when A has n different real 
eigenvalues [1]. Otherwise, controllability is not 
guaranteed. 
The controllability of the iterative solver based on the 
discrete MIMO- system (4) can be determined using 
the well-known tests [5]. It is clear that (4) is 
completely controllable if and only if the Kalman rank 
condition is satisfied 

rank[G (E� − A)G ⋯ (E� − A)���G] = � (7)

4. Linear control of iterative solvers based on the 
multistep decomposition method 
Consider a method of linear control of linear 
multidimensional dynamic systems that can be used for 
designing fast and superfast iterative solvers of SLAEs 
(1) [17].
Under the condition that the matrix A, is invertible, 
solution  (2) can be written in the form of the power 
series [3] 

x = A��b = � ��(E� − A)�b���
���

for certain �� ∈ , � = 0,1, . . . , � − 1. Thus, the inverse 
matrix A�� can be determined using the MIMO system 
(4). The behavior of residual e� is described by the 
linear system [1] 

      e	
� = (E� − A)e	 − AGu	, e� ∈ F�        (8) 

An analysis of (8) proves the following propositions. 
4) The discrete MIMO system (8) is completely 
controllable if and only if the pair (E� − A, −AG) is 
completely controllable in the sense of criterion (7). 
5) If the MIMO system (8) is completely controllable, 
then there exists a feedback control (5) (which is not 
unique in the case m>1), such that the asymptotic 
stability condition holds: 

                 ∀λ ∈ eig(E� − A + AGK), |λ| < 1. (9)

Let, as before,  A� = E� − A, G� = −AG. Denote by G� 
the matrix that is a left divisor of the matrix G and, 
therefore, satisfies the conditions [5]:G� G� = 0,G� G� 
 = E!, 

G� G� 
 = "G� G� 
#$
, 

G� 
G� = "G� 
G� #$
, 

where G� 
 is a pseudoinverse matrix for G� . 
Determine the controller matrix K in the formula for 
the feedback control (5) by

                                K = G�
A� − ΛG�
                       (10) 
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Here, � is a matrix with the prescribed (desired) 
eigenvalues. 
It can be shown that 

eig"A� + G�K# = eig"G� A�G� 
# ∪ eig(Λ)
A drawback of this feedback control (10) is that the 
stability of the matrix  G� A�G� 
 cannot be guaranteed in 
the general case. For this reason, we consider the 
multistep decomposition of system determined as 
follows: 
initial state 

                               A�� = A�, G�� = G�,                       (11) 

the first step  

                      A�� = G� A�G� 
, G�� = G� A�G�,…,             (12) 
the kth (intermediate) step A�	 = G� 	��A�	��G� 	��
 , G�	 = G� 	��A�	��G�	��,  (13) 
the Sth (final) step A�' = G� '��A�'��G� '��
 , G�' = G� '��A�'��G�'�� (14) 
Here *=floor - �/5 − 1; floor – the operation of 
rounding a number �/7 to the nearest integer in the 
smaller side, e.g., floor(0,4) = 0, floor(2,9) = 2, etc. 
If we also determine in the step-by-step manner the 
matrices    K� = Λ�G��� − G���A��, G��� = G��
 − K�G� �,           (15)         K� = Λ�G��� − G���A��, G��� = G��
 − K;G� �,…       (16)        K	 = Λ	G�	� − G�	�A�	, G�	� = G�	
 − K	
�G� 	,      (17)                          K' = Λ'G�'� − G�'
A�',                        (18)
Then, after closing the system by the feedback control 
(5), with the matrix K given by              K = Λ"G�
 − K�G� # − "G�
 − K�G� #A�,        (19) 
we obtain the equality of the sets of eigenvalues:                     eig"A� − G�K# = ⋃ eig(ΛC��)'
�C��               (20) 
Here ΛD��(H − 1 = 0,1, . . . , *) – are the matrices with 
the prescribed eigenvalues at each level of 
decomposition and ⋃ eig(ΛD��) = eig(Λ)I
�D�� . 
Thus, the multistep decomposition of system (11) –
(14) and the procedure of determining the matrix K 
(19) based on (15) – (18) ensure the prescribed location 
of the eigenvalues J = L�̑�, �̑;, . . . �̑�N, as specified in 
(20). 
Consider the problem of designing control (5), that 
guarantees that the transient process of the discrete 
MIMO system takes a finite time. In this case, the 
matrix A� − G�K has only zeros as its eigenvalues [18], 
i.e., 

                     eig"A� − G�K# = {0,0, . . . ,0}                   (21)
This requirement implies that we can take any nilpotent 
matrices with the index of nilpotency not exceeding O
as the matrices ΛD [2, 5]. In this case, the convergence 
of the designed solvers considered as discrete systems 
will take place not more than n steps. We call such 
solvers fast. 
If we use the zero matrices as ΛD , then this case can be 
assigned the discrete system x�
� = b, in which the 
convergence is obviously already at the second step, 
i.e., x� = 0, x� = b. Such solvers can be called 
superfast.
For the zero matrices ΛD of the corresponding size, the 
final stage of algorithm (15) – (18) is

K� = −"G��
 − K�G� �#A��, K� = −"G��
 − K;G� �#A���…, (22)

K	 = −"G�	
 − K	
�G� 	#A�	,,…K' = −G�'
A�'. (23) 

It follows from (22) – (23), that, if the number of 
decomposition steps is * = 1, then the formula for the 
matrix K in control (5), that guarantees not only the 
finite duration of the transient process but also the 
superfast convergence (during the first two iterations 
independently of the size of the discrete MIMO 
system) takes the form: 

                      K = −"P
Q + G��
A��G� #A�.            (24) 

For * = 2 и * = 3, the formulas for K are somewhat 
more complicated: 

          K = −"G
Q + "G��
 + G�;
A�;G� �#A��G� #A�,       (25) 
K = −"G
Q + "G��
 + "G�;
 + G�R
A�RG� ;#A�;G� �#A��G� #A�. (26) 

The analysis of the final formulas (24) – (26),
shows that the matrices K obtained using the multistep 
decomposition contain enclosures whose form is 
determined both by the matrix A of system (1), and by 
an arbitrarily chosen matrix G. and by an arbitrarily 
chosen matrix G , we have a wide choice of the 
matrices K. For example, if we require in advance that 
G has not less than n/2, columns, then control with the 
matrix K (24) guarantees that the iterative process has 
fast convergence rate: x	
� = A�x	 − G"G
Q + G��
A��G� #A�(b − Ax	) + b (27) 

4 Examples of the synthesis of 
superfast iterative solvers 
First, consider SLAEs  (1) in the general form with a 
noncyclic matrix not satisfying the normality 
conditions 

                            A = S r w 0 0−w r 0 00 0 λ 10 0 0 λU,             (28) 
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where r, w, � are given numbers. The nonciclicity of 
matrix (28) is directly indicated by the diagonal 2×2 
blocks the first of which is a Jordan block and the 
second one is an upper triangular matrix. The fact that 
this matrix is not normal is verified 
straightforwardly:�V� ≠ ��V . Let the vector b be also 
given in the general form 

                              � �T1 2 3 4b b b b�b              (29) 
 Specify the matrix G by: 

                              G = X1 0 0 00 0 0 1Y$             (30) 
We construct the iterative solver using algorithm (11) –
(18), (22) – (23). It is seen from the analysis of 
matrices (28) и (30), that in this case *=floor(�/7) −1 = floor(4/2) − 1 = 2 − 1 = 1 therefore, after 
performing the two-step decomposition consisting of 
the zero and the first step, we may use formula for the 
matrix K (24). 
Thus, according to (24), we obtain K =

Z− \�
^���\�
^� \_�;\�
\^�
\�;^�\�
^� 0 00 0 − (`��)�` − `���`�
a. 

In this case eig"A� − G�K# = {0,0,0,0}, which was to be 
proved. 
By running the iterative solver (27) with the parameters 
for the zero initial conditions indicated above, we 
obtain the following sequence of residuals 

� �T0 1 2 3 4b b b b�e ,  

e� =
⎣⎢
⎢⎢⎢
⎢⎡− (\��\
^�)(�h�\�
h�\�h�^�
hj^)^(\�
^�)− �h�\�
h�\�h�^�
hj^\�
^�h_`��h_`
hk`�− (`��)"h_`��h_`
hk#` ⎦⎥

⎥⎥⎥
⎥⎤, 

e; = [0 0 0 0]$,…,e	 = [0 0 0 0]$,  k > 2. 
We see that the iterative process converged to the exact 
solution already at the second iteration step.  
An analysis of the proposed superfast solvers of linear 
equations with the matrices and vectors the elements of 
which are distributed normally and the eigenvalues of 
the matrices A re distributed by Girko’s circular law 
[19]:  A = randn(1000 × 1000), G = randn(1000 ×500), b = randn(1000 × 1), A = randn(5000 × 5000), G = randn(5000 ×2500), b = randn(5000 × 1), 

showed that in all the cases the iterative process 
converged at the third or fourth iteration step 
independently of the size of the problem. For each 
value of the problem size, at least n+1 examples were, 
n – dimension of the vector in the right part (1). 
Superfast iterative solver for power flow calculation of 
large electric power system 
Let’s consider the example the calculation of superfast 
iterative solver for a model of a real power system [20]. 
It’s scheme includes several concentrated subsystems 
connected by relatively weak connections. Electric 
power system considers 286 buses, 531 branches, 129 
synchronous generators. There are several variants of 
the Jacobi matrix A for this system, including size 
258×258. «Portrait» of the specified matrix for one of 
the regimes of electric power system is shown in Fig. 
1.  
Computing the determinant of the Jacobi matrix yields 
a number that close to infinite vyz � = ~� =���; ⋯ �;��= 6,3108�10258, i.e. it’s very difficult to 
solving SLA (1) by the standard method by calculating 
the attached matrix. In addition, the Jacobi matrix 
demonstrates weak scalability, which means large 
differences in the values of elements (in this case items 
vary from –500 to 1500).  

Fig. 1. «Portrait» of the corrected Jacobian matrix.
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Fig. 2. Eigenvalues of the corrected Jacobian.

It is necessary to adjust the matrix A in such a way that 
fast convergence of iterative processes in multivariate 
calculations of electric power systems regimes is 
carried out. The «Portrait» of the corrected Jacobian 
matrix of electric power system and the distribution of 
its eigenvalues are shown in Fig. 1 and 2, respectively. 
As we see at the Fig. 1 the scaling of the matrix is quite 
satisfactory (the values of the elements vary from -3 to 
2). From Fig. 2 it follows that all eigenvalues of the 
corrected matrix with high accuracy (10–7…10–6) are 
located at the beginning of the coordinates of the com-
Plex plane. This provides the highest rate of 
convergence of the iterative process with the error rate 
of 10-13...10-12. In this case, the convergence of the 
iterative process in the analyzed case occurs on the 
second iteration independently of the right part of the 
SLA (1). 

5 Conclusion 
Algorithms for fast and superfast solvers of large 
SLAEs based on a novel method of the multistep 
decomposition of a linear multidimensional dynamic 
system are proposed. 
Examples of the analytical design of iterative solvers 
for matrices of the general form demonstrated that the 
iterative processes converge already at the second 
iteration step. The statistical analysis of the constructed 
superfast solvers of linear equations with matrices and 
vectors consisting of normally distributed elements 
showed that in all the cases the iterative process 
converged at the third or fourth iteration independently 
of the size of the problem. The difficulty of the 
implementation of the proposed iterative algorithm 
could be caused by the absence of efficient procedures 
for computing pseudoinverse matrices of rank deficient 

matrices. However, this difficulty can be overcome as 
described in [21].
Application of the fast solver in the practical problem 
of calculation of the real EPS mode it is shown that the 
convergence of the iterative process with the residual 
norm 10–13…10–12 starts on the second iteration 
independently of the right side of the SLA (1).
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