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Abstract. As a result of experimental and theoretical studies, the 

patterns of behavior of rocks in a condition close to destructive are 

the focal nature of the preparation of macrocracking, which allowed 

us to include the mesocrack structure of the material, which is the 

main element in the preparation of macrocracking. Differences in 

this new approach to mathematical modeling will let adequately 

describe dissipative mesocrack structures of various hierarchical 

levels of geodesy, predict dynamic changes, structures and 

mechanical properties of both rock samples and massif, which also 

lead to resource-intensive experimental studies. In this paper, with 

usage of the methods of cluster, factor, and statistical analysis, we 

set the task of processing the data of experimental studies of the 

laws of deformation and preparing macro-fracture of rock samples 

by various methods, including acoustic and deformation 

observations. 

1 Introduction 

The task of processing experimental data obtained by the combined method of deformation-

acoustic studies of samples of compressed rocks by machine learning methods [1-2]. 

Considering that the characteristics of the model should be variable and adapt to changing 

conditions, an approach that is related to the development of the concept of multilayer 

neural networks (neural networks, NN) with training using the back propagation (BP) 

method is promising. Modern machine learning methods (Machine Learning Techniques, 

MLT) have already found their use, including in modeling the mechanical characteristics of 

rock samples, which consists in carrying out a number of studies to determine the uniaxial 

compression strength (σc) of individual types of granite, with such input data as free 
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porosity (N48), bulk density in the dry state (d) and ultrasound velocity (v). Studies are 

related to the selection of the most effective model among adaptive digital filters, a neural 

network, and autoregressive analysis [3-8]. Experimental data for neural network modeling 

should be pre-analyzed and processed. Moreover, taking into account the originality of the 

approach to the deformation-acoustic method for isolating the localization of the defect 

center, it is necessary to identify methods that allow the most efficient description of the 

data obtained from the general approaches to processing experimental data. 

The aim of this work was to process the results of experimental data using methods of 

cluster analysis and factor analysis to identify sensors in the focal and near focal areas. 

Statistical processing of data of the largest cluster for the application of experimental results 

in mathematical modeling. 

 

2 A brief description of the experiment  

To develop a comprehensive method for reliable determination of the system of 

deformation precursors of fracture of rock samples under uniaxial compression, a 

cylindrical rock sample was studied. The bases of this sample are flat, parallel to each other 

and perpendicular to the lateral surface of the cylinder. Height is 108 mm, diameter is 54 

mm 

Examination of the sample has been carried out on a servo-controlled hydraulic rigid 

press MTS-816 using a ball bearing in the loading device (figure 1). 

 

Fig. 1. The sample before the test. 

Sensors for measuring longitudinal and transverse strains are located on the lateral 

surface of the sample in the central and in the end parts according to the diagram shown in 

figure 2. 
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b) 

Fig. 2. Positioning of the strain gauges: a) side view, b) top view. 

Under uniaxial compression of the sample, strain gauges record changes in the 

corresponding deformations. Records are shown in Table 1. A detailed description of the 

experimental research methodology is described in [9]. 

  

 , 0 (2019)E3S Web of Conferences https://doi.org/10.1051/e3sconf /20191290129 10

GHCRRM 2019
10118 8

3



Table 1. Data recorded by strain gages. 

   Pair 17 (focal area)   

Stress 

(МРа) 

Emission 

quantity per 

measurement 

interval 

 

Cumulative 

emissions 

Sensor 

33 

Sensor 

34 

Pair 17 - 

Poisson's 

Ratio 

Pair 17 - 

modulus 

of 

elasticity 

0 0 0 0 0 0  

0,1863487 0 0 0 0,003767 0 49,46461 

0,6652691 0 0 0 0,011302 0 58,86327 

1,2782431 0 0 0 0,011302 0 113,0994 

1,6655245 0 0 -0,00376 0,007535 0,4990655 221,0494 

1,893985 0 0 0 0,011302 0 167,5805 

2,1607505 0 0 0 0,011302 0 191,184 

2,3392952 0 0 0 0,007535 0 310,4726 

2,5098683 0 0 0 0,007535 0 333,1112 

2,6909596 0 0 0 0,015069 0 178,5729 

2,8334122 0 0 -0,00376 0,015069 0,24953275 188,0261 

2,9203304 0 0 -0,00376 0,015069 0,24953275 193,794 

3,0594249 0 0 -0,00752 0,011302 0,66542066 270,6991 

3 Data processing by cluster and factor analysis methods 

The experimental data were processed as follows: the entire stress range (from 0 to 336 

MPa) was divided into six different intervals with different step sizes. As the stress 

increased, the interval length and the step size decreased, for a more detailed examination 

of the state of the sample at the time of the appearance of anomalous behavior. So, for 

example, in the first interval (from 0 to 90 MPa), the step size is 10 MPa, and in the last 

(from 320 MPa to 336 MPa) - 2 MPa. 

Preliminarily, pairs of strain gages were built on phase planes εz, εφ on each interval 

(figures 3 - 4). 

 
Fig. 3. Preliminary plotting of pairs of strain gauges on phase planes εz, εφ at the initial 

stage of loading. 

 , 0 (2019)E3S Web of Conferences https://doi.org/10.1051/e3sconf /20191290129 10

GHCRRM 2019
10118 8

4



 
Fig. 4. Preliminary plotting of pairs of strain gauges on phase planes εz, εφ at the last stage 

of loading. 

On the entire range of stresses (from 0 to 336 MPa), stress–strain diagrams were 

plotted. After that, three types of plots behavior were revealed (Fig. 5). 

 
a) 

 
b) 

Fig. 5. Identification of anomalous behavior of the plots: a)plane (σ,εz), b)plane (σ,εφ). 

 

The results were correlated with the sensors layout on the sample surface (Fig. 6). 
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Fig. 6. Sensors layout with anomalies: red – noticable reverse deformations, orange – lesser 

reverse deformations, green – no reverse deformations. 

 

According to figures 3 - 4 and figure 6, sensors with abnormal readings of reverse 

deformations are found in the places of fracture of the sample, which were revealed 

experimentally. 

On the next step, centroid clustering was carried out with the measure of the square of 

Euclidean metric of the plane data (εz, εφ) to select the largest cluster for subsequent 

statistical processing, at each interval with the corresponding step. An example of 

clustering in the first and last section is shown in figure 7. 

 
  a)                                                                 

 
b) 

Fig. 7. Clustering for stresses on interval: a) σi є [0-90] MPa, b) σi є [320-336] MPa. 
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Sensors, which on each interval always belong to the largest cluster, were identified and 

included into the Table 2. 

Table 2. Sensors, which always belong to the largest cluster.  

 Statistical processing was carried out for the largest cluster, for each step of the 

fragmentation.  The individual results of statistical processing are presented in Table 3, for 

the purpose of demonstration. 

Table 3. An example of statistical processing completed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After carrying out the statistical processing, a graph of the relation between strain and 

stress with confidence intervals was plotted using the average values of εz and εφ of the 

largest cluster (figure 8). 

 

 
Fig. 8. Allocation of average strains of the largest cluster for the phase plane (εφ, εz) over 

the entire range of uniaxial compression  

σ
i
, MPa 0-90 90-171 171-260 260-300 300-320 320-336 

Pair 

number 
- 

1, 13, 14, 

24 
1, 8, 24 

1, 8, 9, 11, 

12, 14, 18, 

19, 20, 21, 

22, 24 

1, 7, 8, 9, 

11, 12, 13, 

14, 18, 19, 

20, 21, 22, 

24 

1, 7, 8, 9, 11, 

12, 13, 14, 18, 

19, 20, 21, 22, 

24 

 Transverse Longitudinal 

Average 1.200 -4.399 

Standard 

error 

0.033 0.033 

Median 1.188 -4.371 

Mode - - 

Standard 

deviation 

0.126 0.124 

Dispersion 0.015 0.015 

Excess -1.247 -0.934 

Asymmetry -0.060 -0.034 

Interval 0.372 0.428 

Minimum 0.997 -4.604 

Maximum 1.369 -4.175 

Sum 16.810 -61.594 

Amount 14 14 
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In addition, in the interval σi є [300-330] MPa with a step of 2 MPa, the Poisson's ratios 

for each pair of sensors were calculated. For some pairs of sensors, Poisson’s ratio has the 

maximum allowable value (Table 4).  

Table 4. An example of Poisson's ratios calculation result 

Pair of 

sensors 
ν 

Pair of 

sensors 
ν 

1 0.269 13 0.280 

2 0.258 14 0.231 

3 0.254 15 0.455 

4 0.241 16 0.353 

5 0.232 17 0.328 

6 0.327 18 0.256 

7 0.226 19 0.285 

8 0.259 20 0.272 

9 0.308 21 0.283 

10 0.335 22 0.298 

11 0.249 23 0.542 

12 0.284 24 0.251 

 

Table 5. Results of cluster comparison for the phase plane (εφ, εz) and straight line (ν) 

σi, MPa ε ν 

300 

1, 7, 8, 9, 11, 12, 13, 14, 

18, 19, 20, 21, 22, 24 

2, 3, 4, 5, 7, 8, 11, 14, 18, 24 

302 2, 3, 4, 5, 7, 8, 11, 14, 18, 24 

304 
1, 2, 3, 4, 5, 7, 8, 11, 14, 18, 20, 

24 

306 2, 3, 4, 5, 7, 8, 11, 14, 18, 24 

308 
1, 2, 3, 4, 7, 8, 11, 12, 13, 18, 

19, 20, 21, 24 

310 2, 3, 4, 5, 7, 8, 11, 14, 18, 24 

312 1, 9, 12, 13, 19, 20, 21, 22 

314 1, 9, 12, 13, 19, 20, 21, 22 

316 1, 9, 12, 13, 19, 20, 21, 22 

318 2, 3, 4, 5, 7, 8, 11, 14, 18, 24 

320 2, 3, 4, 5, 7, 8, 11, 14, 18, 24 

322 2, 3, 4, 5, 7, 8, 11, 14, 18, 24 

324 
1, 2, 3, 4, 5, 7, 8, 11, 14, 18, 20, 

24 

326 2, 3, 4, 5, 7, 8, 11, 14, 18, 24 

328 
1, 2, 3, 4, 5, 7, 8, 11, 14, 18, 20, 

24 

330 
1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 

14, 18, 19, 20, 21, 22, 24 

300-330 - 
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For the calculated values of the coefficients, centroid clustering was carried out with a 

Chebyshev distance as a measure. Then, the sensors, which belong to the largest cluster at 

each step, as well as throughout the interval were identified. The data obtained were 

correlated with the data from Table 4 and are shown in Table 5. 

According to Table 5, there are no sensors, which belong to the largest cluster at all 

steps. Therefore, statistical processing was carried out for each step (Table 6), and then, 

with the average values of the Poisson’s ratio at each step, a graph of the realtion between 

Poisson’s ratios and stresses was plottted (figure 9). 

Table 6. An example of statistical processing for the Poisson's ratio. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 9. Allocation of the average values of the Poisson's ratio in the interval σi є [300-330] 

MPa 

The results of cluster analysis gave 5-6 groups of sensors. An unambiguous 

interpretation of the clusters is difficult. To clarify the interpretation of the results of cluster 

analysis, a factor analysis was carried out at the same intervals of stress values as for cluster 

analysis. The analysis was carried out separately for three sets of sensors: εφ sensors, εz 

sensors, for the entire group of sensors. Significant loads of the factor with values > 0.700 

were considered. To rotate the factor matrix, the varimax method was used. 

Average 0.284 

Standard 

error 

0.010 

Median 0.272 

Mode - 

Standard 

deviation 

0.051 

Dispersion 0.002 

Excess 4.549 

Asymmetry 1.809 

Interval 0.228 

Minimum 0.226 

Maximum 0.455 

Sum 6.547 

Amount 23 
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Additionally, the verification of the correctness of the choice of the border of 320 MPa 

was carried out. It is in the range of 320-336 MPa that one factor is divided into several 

factors. The verification was carried out for intervals of 310-336 MPa and 315-336 MPa. In 

both cases, factor analysis gave two factors, one of which contained only one to four 

sensors. Sensors on εφ (odd-numbered sensors) gave the following results: on the stress 

intervals 1,2,3,4,5, one factor is identified which contains all the points; on the interval 320-

336 MPa, three factors are distinguished, see Tables 8 - 9. Three factors are distinguished in 

the interval 320-336, see Table 7. 

Table 7. Factors at σi є [320-336] MPa. 

Factor number 
εφ sensor numbers, which belong to 

factor 

F1 3-13,21-31,35,37 

F2 17,19, 39-47 

F3 1,33 

 
If instead of the interval 320-336 MPa we take 315-336 MPa, two factors stand out. See 

Table 7. 

Table 8. Factors at σi є [315-336] MPa. 

Factor number 
εφ sensor numbers, which belong to 

factor 

F1 All other 

F2 3,19,33,47 

 

Finally, if we take the interval 310-336 MPa, we have the following result 

Table 9. Factors at σi є [310-336] MPa. 

Factor number 
εφ sensor numbers, which belong to 

factor 

F1 All other 

F2 3,33,47 

 

Sensors according to εz (sensors with even numbers) give the following results: on the 

stress intervals 1, 2, 3, 4, 5, one factor is allocated that contains all the points; in the interval 

320-336 MPa, two factors are distinguished, see Table 10. 

Table 10. Factors at σi є [320-336] MPa. 

Factor number 
εz sensor numbers, which belong to 

factor 

F1 All other 

F2 2,4,20,34,48 

 

 If instead of the interval 320-336 MPa we take 315-336 MPa, two factors stand out: 

Table 11. Factors at σi є [315-336] MPa. 

Factor number 
εz sensor numbers, which belong to 

factor 

F1 2-30,36-48 

F2 32,34 

 

If instead of the interval 310-336 MPa, two factors stand out: 
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Table 12. Factors at σi є [310-336] MPa. 

Factor number 
εz sensor numbers, which belong to 

factor 

F1 All other 

F2 34 

The use of data for all sensors (both εφ and εz) gives the following results: on the stress 

intervals 1, 2, 3, 4, 5, one factor is selected that contains all the points; in the interval 320-

336 MPa, two factors are distinguished, see Table 13. 

Table 13. Factors at σi є [320-336] MPa for all sensors. 

Factor number 
Sensor numbers, which belong to 

factor 

F1 All other 

F2 1,3,32,33,34,47 

 

The fact that factors for different types of sensors combine sensors partially located in 

different places of the sample is most likely explained by the different nature of the 

deformations along the two selected axes. Results for three groups of sensors are shown in 

Table 14. 

Table 14. Results of factor analysis for three group of sensors. 

Factor 

number 

Sensor numbers εφ, 

which belong to factor 

Sensor numbers εz, 

which belong to factor 

Numbers of all sensors, 

which belong to factor 

A All other All other All other 

B 3,19,33,47 2,4,20,34,48 1,3,32,33,34,47 

 

 

 
 

Fig. 10. Sensors that fall into the same clusters in several methods of rotation of the factor 

matrix: the sensors that fall into cluster B in 3 methods are highlighted in red; blue – in 1 

and 2 methods (left), and experimentally discovered location of the destruction center 

(right). 

. 
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4 Conclusions 

With a certain degree of certainty, it can be argued that two factors mean dividing the set of 

sensors (and thereby local places on the sample) into two sets: A - “local places without 

features” and B - “local places with features, possibly focal or near focal ". 

For the sample under study, set B most likely consists of pairs of sensors 1-2, 3-4, 19-

20, 33-34, 47-48. Sensors that are found in at least two factor divisions are taken. 

The data on the deformation of the specimen along the axes φ and z are not enough to 

confidently draw a conclusion about the location of the fracture site. 

This work was presented at The 1
st
 International Scientific Conference “Problems in 

Geomechanics of Highly Compressed Rock and Rock Massifs”. 
This work was supported by a grant from the Ministry of Science and Higher Education. 

Unique Agreement Identifier is RFMEFI58418X0034. 
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