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Abstract. The FSI problem - unsteady channel flow with a moving indentation problem, which represents 
flow features of oscillating stenosis of a blood vessel, is numerically simulated. The flow inside the channel 
with moving boundary results in transient and complex flow phenomena mainly due to the interaction between 
the moving boundary and the flowing fluid. In this paper, an accurate Harten Lax and van Leer with contact 
for artificial compressibility Riemann solver have been used for flow computation. The Riemann solver is 
modified to incorporate Arbitrarily Lagrangian-Eulerian (ALE) formulation in order to take care of mesh 
movement in the computation, where radial basis function is used for dynamically moving the mesh. Higher 
order accuracy over unstructured meshes is achieved using quadratic solution reconstruction based on solution 
dependent weighted least squares (SDWLS). The present numerical scheme is validated here and the 
numerical results are found to agree with experimental results reported in literature. 

1 Introduction  
Incompressible flows over moving boundaries are 
encountered in many practical situations. The main 
feature of these flows is their unsteadiness with respect to 
shape of the boundaries and corresponding flow patterns. 
One such example is the flow over a moving indentation 
inside a channel [1], which represents flow features of 
oscillating stenosis of a blood vessel. The flow inside the 
channel with moving boundary results in transient and 
complex flow phenomena mainly due to the interaction 
between the moving boundary and the flowing fluid. 
Pedley et al. [1] had carried out the experimental 
investigation on the moving channel at various reynolds 
number with chanel flutuation (related with Strouhal 
number). They observe the generation of vortices 
producing from the top fixed wall as well as bottom 
moving wall. Ralph et al. [2] simulated the viscous and 
inviscid flows in a channel with a moving indentations 
and confirms that the continues generation of vortex 
which ultimetely related to the pressure variation across 
the channel. Zhao et al. [3] also simulated the the channel 
flow by using higher order accurate method applied over 
unstructured mesh using artifical compressibility method. 
Mandal et al. [4] had attempted simulation using artificial 
compressibility method. The reults of all mentioned 
literatures are found to be matching well, however they 
were also indicating a scope to capture the flow physics 
in a better manner. 
In this paper, the FSI problem - unsteady channel flow 
with a moving indentation problem is studied using a 

                                                
 

numerical method. An accurate Harten Lax and van Leer 
with contact for artificial compressibility (HLLC-AC) 
Riemann solver [4 - 6] developed for solving 
incompressible flows in artificial compressibility 
formulation have been used for flow computation. The 
Riemann solver is modified to incorporate Arbitrarily 
Lagrangian-Eulerian (ALE) [7] formulation in order to 
take care of mesh movement in the computation, where 
radial basis function [8] is used for dynamically moving 
the mesh. Higher order accuracy is achieved using 
quadratic solution reconstruction based on solution 
dependent weighted least squares (SDWLS) [9]. The 
results obtained by the present method is validated against 
the results reported in the literature. 

2 Arbitrarily Lagrangian-Eulerian (ALE) 
formulation 

The integral form of 2D unsteady incompressible Navier–
Stokes equations in artificial compressibility [10] 
formulation, with Dual time steeping (DTS) approach 
considered for time accurate solution, written in 
Arbitrarily Lagrangian-Eulerian (ALE) [7] formulation 
for mesh movement as,  
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where, 𝑈𝑈 = 𝑢𝑢 − 𝑥𝑥�  and 𝑉𝑉 = v − 𝑦𝑦� are the convective 
velocities in referential frame with 𝑥𝑥� and 𝑦𝑦� are the 
velocities of the moving grid in X and Y directions 
respectively. Note that, equation (1) does not exhibit any 
physical meaning until pseudo time steady state, i.e.  
���
��

= ��
��

= ��
��
≅ 0� is reached. As the pseudo-steady 

state is reached, the equations are identical to the original 
unsteady incompressible Navier-Stokes equations in ALE 
form.  

Now splitting the convective fluxes (𝐸𝐸� and 𝐺𝐺�) of 
equation (1) into stationary reference flux and ale flux part 
as, 
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Now equation (4) can be discretized in a very similar 
manner to that for unsteady Navier-Stokes equation for 
stationary boundary problem [4 - 6]. The additional effort 
need to be added for ale flux vector. This additional term, 
ale flux, is nothing but the volumetric increment along the 
face and can be evaluated by considering the Geometric 
Conservations Law (GCL) [8]. 

The radial basis function [11]: Thin-Plate Spline (TPS) 
with global support is used for mesh movement. The Thin 
Plate Spline with global support generates meshes of high 
quality after deformation along with the computational 
efficiency.  

The fluxes at cell interface, that is, the stationary reference 
convective fluxes are evaluated using the Harten Lax and 
van Leer with contact for artificial compressibility 
(HLLC-AC) [4 - 6] Riemann solver. Higher order 
accuracy is achieved using quadratic solution 

reconstruction, where interface values are reconstructed 
based on solution dependent weighted least squares 
(SDWLS) [9]. For viscous fluxes, a central differencing 
method based on Green-Gauss approach is used. 

3 Channel flow with a moving 
indentation 
The geometry and dynamics of the moving indentation 
channel chosen here is identical to the experimental work 
of Pedley and Stephanoff [1]. The aspect ratio of the 
channel is 10, and features of the flow are observed to be 
uniform in the span-wise direction over most of the flow 
cycle, so that a two-dimensional simulation is appropriate. 
The schematic of flow problem is shown in Fig. 1. 
 

 
Figure 1: Schematic of the problem setup. 

 
The shape of indentation varies as a function of space and 
time 𝑓𝑓(𝑥𝑥, 𝑡𝑡) as, 
 

 
 
The parameters, x1 = - 13.75, x2 = -11.75, x3 = -9.25, x4 
= -1.25, x5 = 1.25, x6 = 13.25, ɛ  =  0.38,  and  βdyn  =  4.14,  
similar to those of Zhao and Forhad [3] have been chosen. 
 No slip boundary condition is applied on the walls, 
which is specified by imposing (u, v) wall = (0,0) on static 
walls, and (u, v) wall = (xt, yt) wall on moving wall. At 
inlet, a Poiseuille velocity profile is specified as boundary 
condition. At the outlet, back pressure, pb is specified and 
velocities are extrapolated. The inlet pressure is computed 
from the interior. 

4 Result and discussion  
A quantitative comparison between the present results and 
literature results [1 -3] in terms of time evolution of shed 
vortices ‘B’, ‘C’, ‘D’ are presented graphically in Fig. 2, 
which are found to be in good agreement. The 
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discrepancies seen here are within the range of 
experimental scatter. The discrepancies are also due to 
expected lower accuracy associated with finding locations 
of vortices, which are based on derived quantity 
(vorticity) involving differentiation. 
 

 
Fig 7: Time evolutions of shed vortices ‘B’,‘C’, and 

‘D’ 

5 Conclusion  
An accurate Harten Lax and van Leer with contact for 
artificial compressibility (HLLC-AC) Riemann solver 
with arbitrarily Lagrangian-Eulerian (ALE) formulation 
has been developed and used for computing unsteady 
channel flow with a moving indentation. The results 
obtained by the present solver matches well with that 
reported in the literature. 

Acknowledgments 
This work is supported by Science and Engineering Research 
Board (SERB) – Department of Science and Technology (DST), 
Government of India (ECR/2017/000476). 

References 
1. Pedley T J, Stephanoff K D., J Fluid 

Mech1985;160:337–67. 
2. Ralph M E, Pedley T J., J Fluid Mech, 1989; 

209:543–66. 
3. Zhao Y, Forhad A. , Appl MechEng 2003;192:4439–

66. 
4. J C Mandal, C R Sonawane, A S Iyer and S J 

GosaviInamdar, Computers & Fluids, 46 (2011) 348-
352 

5. C R Sonawane and J C Mandal, International Journal 
of Numerical Methods for Heat and Fluid Flow,. 
Volume 23, Issue 1, 2013 

6. C R Sonawane and J C Mandal, Journal of Heat 
Transfer Engineering, Vol 35, Issue 11/12 
July/August 2014. 

7. Cook J L, Hirt C W, Amsden A A, Journal of 
Computational Physics, 14, Issue 3:227-253, March 
1974 

8. H Bijl, A de Boer, M S van der Schoot, Computers 
and Structures, 85:784–795, 2007. 

9. C R Sonawane, J C Mandal and S. P. Roa, J. Inst. 
Eng. India Ser. C (2017). 
https://doi.org/10.1007/s40032-017-0390-x 

10. A J Chorin, Math Comput, 22, 745-762, 1968. 
11. Lombard C K, Thomas P D, AIAA Journal, 17:1030–

1037, 1979. 
12. E. F. Toro, M. Spruce, W. Speares, Shock Waves, 4, 

25-34, 1994. 
13. J. C. Mandal, S. P. Rao, Computers and Fluids, 44, 

23-31, 2011. 
14. C. F. V. Loan, G. H. Golub., 3rd ed. The Johns 

Hopkins University Press, 1996. 
15. C. Bischof, S. Blackford, J. Demmel, J. Dongarra, E. 

Anderson, Z. Bai, Society for Industrial and Applied 
Mathematics, 1999. 

3

E3S Web of Conferences 128, 10010 (2019)	 https://doi.org/10.1051/e3sconf/201912810010
ICCHMT 2019


