E3S Web of Conferences 128, 09008 (2019)
ICCHMT 2019

https://doi.org/10.1051/e3sconf/201912809008

Coupled System of Boundary Value Problems by Galerkin

Method with Cubic B-Splines

Kasi Viswanadham K.N.S.

Department of Mathematics, National Institute of Technology, Warangal — 506 004, India

Abstract. Coupled system of second order linear and nonlinear boundary value problems occur in
various fields of Science and Engineering including heat and mass transfer. In the formulation of the

problem, any one of 81 possible types of boundary conditions may occur. These 81 possible boundary

conditions are written as a combination of four boundary conditions. To solve a coupled system of
boundary value problem with these converted boundary conditions, a Galerkin method with cubic B-

splines as basis functions has been developed. The basis functions have been redefined into a new set
of basis functions which vanish on the boundary. The nonlinear boundary value problems are solved

with the help of quasilinearization technique. Several linear and nonlinear boundary value problems

are presented to test the efficiency of the proposed method and found that numerical results obtained
by the present method are in good agreement with the exact solutions available in the literature.

1 Introduction

It is well known that, many problems in the areas of
science and engineering are modeled by second order
ordinary differential systems [1-3]. There are only few
methods available to solve the coupled system of linear
or nonlinear differential equations. In this paper we
considered a system of second order linear boundary
value problems of the type

ag(Xuf + ay(xX)u) + ay (xX)u,

+ay (xX)uy +ay(x)us +as(x)uy = f(x)

a<x<b (1.1)

by (xX)uf + by (x)uf + by (x)u,

+by (x)us + by (X)uy + bs(X)uy = f5(x)

a<x<b (12)

subject to the boundary conditions

oy (a) + oy (a) =g (1.3a)
o3uy’ (b) +o4uy (b) = uyy (1.3b)
Hytty (@) + patt (@) = g (1.3¢)
p3uy (b) + pagur (b) = iy (1.3d)

Where 61, O2, O3, O4, Wi, W2, W3, K4, Ul0, ULl, U20, U21 are
finite real constants and ao(x), ai(x),..., as(x), bo(x), bi(x),
..., bs(x), fi(x), fo(x) are all continuous on [a,b].
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In many of applications we get a system of second
order boundary value problems with both linear and
nonlinear type. Here we considered a linear system of
second order boundary value problems (1.1)-(1.2) along
with 81 possible types of boundary conditions. If there is
a coupled nonlinear system of second order boundary
value problems, it can be converted into a sequence of
coupled system of linear second order boundary value
problems by using quasilinearization technique [4]. The
limit of solutions of these generated linear boundary
value problems is the solution of the nonlinear boundary
value problem. Geng & Cui [5] and Dehghan & Abbas
[6] solved coupled linear and coupled nonlinear system
of boundary value problems with homogeneous
boundary conditions only. In [6] they presented a sinc
collocation method to solve the system. Several authors
presented different numerical techniques of solving
coupled system of second order boundary value
problems [7-9].

In the next section we present the definition of cubic
B-splines. In finite element method, the approximate
solution can be written as a linear combination of basis
functions which constitute a basis for the approximation
space under consideration. The finite element method
viz., Galerkin method produces a weak form of
approximate solution for a given differential equation
and is unique under appropriate conditions [10,11]
irrespective of properties of a given differential operator
and weak solution is also a classical solution of given
differential equation provided sufficient attention is
given to the boundary conditions[12]. The attention to
boundary conditions is presented in section 3. In section
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4 the Galerkin method to solve the given coupled linear
system (1) has been presented. In section 5 the solution
procedure to find the nodal parameters has been
presented. In section 6 the proposed method is tested on
two coupled linear systems and one coupled non linear
system. The solution of coupled nonlinear system has
been obtained as the limit of sequence of coupled linear
problems generated by quasilinearization technique [4].
Finally, we presented the conclusions in the last section.

2 Definition of Cubic B-Splines

The existence of cubic B-spline interpolate s(x) to a
function f{x) in a closed interval [a,b] for spaced knots
a=x0<x1<...<xp1<x,=b
is established by constructing it. The construction of s(x)
is done with the help of cubic B-splines. Introduce six
additional knots x.3, X2, X1, Xp+1, Xn+2, Xn+3 sSuch that
X3 <X <x1 <xoand X, < Xp+1 < X2 < Xpt3.

Now the cubic B- splines Bi(x), given in [13, 14] are

defined by

i+2 3
(xr — X)+ ;
ifxe[x;,_5,x.5]
Bl(x) — r:ZZEZ ﬂ_!(xr) -2 i+2
0 otherwise
where

3 .
3 |(x,—x) ifx.>x
(xr - X)+ = g . '
0 ifx, <x
and

7(x) = (x =22 )(x =2, ) = X )(X = x4 (X = X40) -
It can be shown that the set {B.1(x), Bo(x), Bi(x), ...,
B.(x), By1(x)} forms a basis for the space Si(wt) of cubic
polynomial splines [15]. Schoenberg [16] has proved
that the cubic B-splines are the unique non zero splines

of smallest compact support with knots at
X3 <X2<Xx1<X0<X1<..< Xp<Xpt1 <Xp+2 < Xp+3.

3 Attention to Boundary Conditions

To solve the coupled linear system of boundary value
problem (1) by Galerkin method with cubic B-splines as
basis functions, we approximate the solutions u; and u»
as

n+l

w(x)= Y o;B;(x) (3.1)
j=1
n+l

up(x)= D B;B;(x) 3.2)
j=-1

where ¢’s and f’s are nodal parameters to be
determined and Bj(x)’s are cubic B-spline basis
functions.

When the chosen approximation satisfies the
prescribed boundary conditions, it gives better
approximation results. In view of this, the basis functions
are redefined into a new set of basis functions which
vanish on the boundary along with the nonhomogeneous

part which takes care of the prescribed boundary
conditions. In the set of cubic B-splines {B.;(x), Bo(x),
Bi(x),..., Bui(x), Bu(x), Bn:i(x)}, the basis functions
B.i(x), Bo(x), Bi(x), Bni(x), Ba(x) and Bn+i(x) do not
vanish at one of the boundary points. So, there is a
necessity of redefining the basis functions into a new set
of basis functions which vanish on the boundary. The
procedure for redefining of the basis functions is as
follows.

Applying the boundary conditions (1.3) for u;(x) and
uz(x) defined in (2) and from the definition of cubic B-
splines described in section 2, we get

uyg = oy (@) + oy (a) = oy (x0) + o1y (xp)

= oyla_1B_{' (xp) + By (xp) + ey By (xp)] (3.3)
+opla_yB_(xg) +agBy(xo) + a1 By (xp)]

u,, = o, (b)+ou, (b) = oy (x,) + o, (x,)

"(x)+a,B, (x)+a,.B,.. (x) D

n"n

=o,la, B

n—1

+o,la, B, ,(x,)+a,B,(x,)+ a,,B,.(x,)]
Uy = ity (@) + poty (@) = pytty (Xy) + ptty (x,)

= [ BB (x0)+ BuBy (x) + BB (x,)] (3.5)
1,18, B(x,)+ ByBy(x,) + BB, (x)]

ty, = g, (0) + 10, (b) = paty (x,) + gy (x,)

= (B, B, (x,)+B,B, (x)+ BB, (x)] 36

+H[ B, B, (x,) + B,B,(x,)+ B,.B,.(x,)]

Now eliminating o1, au+1, f1 and S+ from the
equations (3.1) to (3.6), we get

uy (x) = w(X)+ Y. @;B;(x) (3.7)
Jj=0
uy (x) = wy (x) + Y. B;B;(x) (3.8)
j=0
where
W (x) = ——— B, ()
0B (x,)+0,B_,(x,) (3.9)
T B,,(x)
O-SBHH (‘xn ) + O-4Bn+1 (xn)
W, () = 0 B_,(x)
B (x)+ 1B, (%)) (3.10)
+ D B,.(x)
:u3Bn+1 (‘xn) + /u4Bn+1 (xn)
5,0~ DI ED) o or =0
o,B.(x,)+0,B,(x,)
Ej(x)z B,(x) for j=2,3,.,n-2

R L CALT L ICY

O-anu, (x,)+0,8,,(x,)

3.11)

B, (x) for j=n-1ln
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B/ (x)) + 1,B,(x,) . d?
B;(x)- ! ! B (x) for j=0,1 ; - -
g oy T P mi%m [ 8,0]+ s B,]
B (x)= B,(x) for j=23,.,n-2 . -
’ , +as(x)B; (x)}B; (x)dx
,u3B/ (‘xn)+ﬂ4B/'(xn) . . ’ . .
B;(x)- - B, (x) for j=n-ln for i=0,1,2,...,n, j=0,1,2,...n
B, (x,)+ 1B, (x,) = [Cij] . 4.7
(3.12)
The new set of Dbasis functions for the I tbo (x) [B (x)}+b1(x)—[B (X)J
approximations u(x) and ux(x) are {él (x),j=0,1,...,n} 0 b (0B B (od
. + - ;
and {B,(x),j=0,1,...,n} respectively. Here w;(x) and 208 (xf)} l_((;c)l; 0.1
wa(x) take care of given set of boundary conditions - [d:/),]r .l b TS (4.8)
and Ej (x)'s, l:}]. (x)'s vanish on the boundary. 22
o z%ﬁmw—@uwwm—puﬂ
4 Description of the method x)
Applying the Galerkin method with the redefined set of +bs(x)B J ()} B; (x)dx
basis functions Bl-(x) and él-(x), i=0,1,...,n-1,n to for i=0,1,2,....,n, j=0,1,2,...n
the problem (1), we get Fi- [fu ; 4.9)
Xy ~ = | [fi(x)—{ay(x Lia (x——i—a xX)wy(x
_[[ao(x)ul”+a1(x)u1'+a2(x)u1}Bi(x)dx JO S = iao ) @) dx 23 ()
X0 2
d“w dw ~
X , , . +tas (X)Tzz tay (x)dixz +as(x)wy (x)}1B;(x)dx
+_[ [a3 Oy +ay(x)uy +as (x)uz]Bi (x)dx X
X0 FZ [f21 , (4 10)
Xn " = —_—
= [ A@Bwdx, fori=0,1...n (@1 xj L2~ {bo(x) ERC ) +b2(x)w1(x)
X0 0
2
%, +b3(x) +hy(x )7+b5 ()W (x)}1B; (x)dx
| [bo(x)ul" by (Xl + by (x)ul]Bi(x)dx i
X0
a=lay o o, B=[8 A g1

+ [b3 (" + by (XYt +bs (x)uz}BA’,- (x)dx
X0

Xn R
= I fo(x)B;(x)dx, fori=0,1,....,n

0

“4.2)

Substitute the approximations for u;(x) and wux(x)
given in (3.7) and (3.8) in (4.1) and (4.2), and after
rearranging the terms for resulting equations, we get a

coupled system of equations in the matrix form as
Aot+BB=F: 4.3)
CotDB=F: 4.4
where
A=la; @.5)
Mmm @ummm—puﬂ
X0
+ay(x)B;(x)}B; (x)dx
for i=0,1,2,...,n, j=0,1,2,...n

B = [byl; (4.6)

5 Solution procedure to find the nodal
parameters

A typical integral element in any of the matrices A, B, C
n-1

and D is Z I, .
m=0
Xm+1
Iri (0)r; (x)Z(x)dx and ri(x), ,(x) are

X

where I, =

the basis functions or their derivatives. It may be noted
that I, = 0 if (xi2, Xi+2) M (X2, Xj+2) N (Xmy, Xm+1) = 0. To
evaluate each I,,, we employed 4-point Gauss-Legendre
quadrature formula. Thus the matrices A, B, C and D
described in (4.5) to (4.8) are seven diagonal band
matrices. We solve the coupled system of equations
(4.3)-(4.4) by using the following iteration formula.

Aa") =F,-B g
pp" Y —koc ", =012,
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The nodal parameterse;’s and f;’s can be obtained

from the above system by using the band matrix solution
package. We have used the FORTRAN-90 program to
solve the boundary value problems (1) by the proposed
method.

6 Numerical Examples

To test the applicability of the proposed method, we
considered two examples of coupled linear systems and
one coupled non linear system. The numerical results for
these examples are compared with the results available
in the literature.

Example 1:
Consider the following coupled linear system of
boundary value problem

u"(x)+u'(x)+xu(x)+v'(x)+ 2xv(x) = f1(x),

0<x<I, 5.

2u'(x) + x2u(x) +"(x) +v(x) = f5(x),
0<x<1, (5.2)
subjectto u(0)=u(1)=0,w(0)=w(1)=0 (5.3)

where
J1(x)=-2(1+x)cosx +wcosx+2xsinzx

+(4x—2x% —4)sinx
£ (x) = 4(1-x)cos x +2(—2+ x> —x°)sinx
+(1—722)sin7rx

The exact solutions of u and v are u(x) = 2(1 — x) sin(x)
and v(x) = sin(7x). The proposed method is tested on the
problem (5.1) to (5.3). Numerical results obtained by the
proposed method are presented in tablel and table 2 and
compared with the results in [5] and [6]. The maximum
absolute error obtained by the proposed method is
compared with that of obtained in [5] and [6] in table 3.

Table 1
Numerical results for the variable « in Example 1
Absolute Absolute Absolute
X error by error by the | error by the
proposed method [5] | method [6]
method with 32 with 32
with 10 intervals intervals
intervals
0.08 | 8.18x10° | 33x10°7 32x1073
024 | 1.65x10° | 7.7x107 92 x10*
040 | 1.66x10° | 9.7x107 20x1073
0.56 | 1.20x10~° | 9.5x10°3 22x10*
0.72 | 571 x10° | 73x1073 4.1x1073
0.88 | 9.65x10° | 34x10°3 1.0x 1072
096 | 1.41x10° | 1.1x10"3 1.1x1073

Table 2
Numerical results for the variable v in Example 1

Absolute error Absolute Absolute

X by proposed error by the | error by the
method method [5] method [6]
with 10 with 32 with 32
intervals intervals intervals

0.08 232x1073 7.7 %1073 1.5x1073
0.24 6.22x 107 2.0 x 102 7.0 x 1073
0.40 8.38 x 10~ 2.7 x 102 7.4 %1073
0.56 8.52x 107 2.7 x 1072 1.0 x 102
0.72 6.60 x 10~ 2.0 x 102 44 %103
0.88 3.14x 1073 9.4x10°3 2.1 x1072
0.96 1.07 x 103 3.1x10°3 6.9 x 1073

Table 3
Maximum Absolute Errors for the Example 1

Variable By the By the By the

proposed method method
method in [5] in [6]

with 10 with 32 with 32

intervals intervals intervals

1.66 x 107 9.7x10-3 1.0x 102
8.52x 107 | 27x102 | 2.1x10%
Example 2:

Consider the coupled linear system of boundary value
problem

" r_ 3 2
u'+xu+2vi=x+x +2+2cosx’ 0<x<1, (54)

u+v"'+2v=x"+x+sinx
subject to the boundary conditions

u'(0)+u(0)=1

V(1)+v(1)=cosl+sinl (5.5)

u(l)=2,v'(0)=1
The exact solutions u and v for the system (5.4) and (5.5)
are u(x) = x* + x and v(x) = sin x. The proposed method
is tested on the problem (5.1) to (5.3) where the domain
[0,1] is divided into 10 equal intervals. Numerical results

obtained by the proposed method are shown along with
the exact solutions are presented in table 4.

Table 4
x Absolute error | Absolute error
for u(x) for v(x)
0.0 0.37784E-05 0.17698E-05
0.1 0.34035E-05 0.17363E-05
0.2 0.30409E-05 0.16417E-05
0.3 0.26974E-05 0.14988E-05
0.4 0.23735E-05 0.13226E-05
0.5 0.20593E-05 0.11247E-05
0.6 0.17440E-05 0.92328E-06
0.7 0.14138E-05 0.73612E-06
0.8 0.10335E-05 0.57280E-06
0.9 0.57340E-06 0.44882E-06
1.0 | 0.00000E+00 0.37789E-06
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Example 3: Table 6
Consider the following coupled nonlinear system of Numerical results for the variable v in Example 3
boundary value problem Absolute Absolute Absolute
" 2 _ X error by error by the | error by the
u"(x) + xu(x) +2xv(x) + xu” (x) = f1(x), (5.6) proposed method [5] | method [6]
0<x<I method with 32 with 32
2 ' . 2 _ with 10 intervals intervals
X“u(x)+v'(x) +v(x) +sin(x)v”(x) = f>(x), (5.7) intervals
‘ 0<x<l 0.08 | 1.64x10° | 2.0x103 | 2.4x10*
subjectto u(0) =u(1) =0, v(0) =v(1) =0 (5.8) 024 | 7.63x10° | 56x10° | 23x10°
where fi(x)=2xsinmx+x° —2x* +x% -2 040 | 490x10° | 7.9x10° | 89x10
and 056 | 7.39x10 | 82x103 | 14x10°
_ 34 . . . 072 | 1.76 x 107 6.5x107 3.1x1073
f>(x) =x"(1—x)+sin (1 + sin xsin 7zx) + 77 cos zx 088 | 416x10° | 31x10° | 16x107
096 | 1.79x 107 1.0x10° 9.8 x10*
The exact solutions u and v for the (5.6)-(5.8) are - Table 7X -
u(x) =x- x? and v(x) = sin(7zx). By the quasilinearization Maximum Absolute Errors for the Example 3
technique [4] the problem (5.6)-(5.8) has been converted .
. . Variable By the By the By the
into a sequence of coupled linear problems as
) proposed method method
gy () [ XU+ 201) a7 () + 230,41 (%) Method in [5] in [6]
B 2 (-9 with 10 with 32 with 32
= N0+ xu (x) intervals intervals intervals
1.89 x 107 22x1073 1.4x10*
xzun+1(x)+v,'1+1(x)+[l+25in(x)vn(x):| Va1 (X) 5.10) v 416 %10 | 82x103 | 3.1x107
. 2 >
= f5(x)+sin(x)v;, (x)
subject to  +1(0) = tns1(1) = 0, v1(0) = vii1(1) = 0 7 Conclusions
forn=0,1,2,...

Here u,+1 and v,+1 are the (n+1)" approximations for u
and v respectively. The proposed method is tested for the
above problem. Numerical results obtained by the

proposed method are presented in table 5 and table 6 and
compared with the results in [5] and [6]. The maximum

absolute error obtained by the proposed method is
compared with that of obtained in [5] and [6] in table 7.

Table 5
Numerical results for the variable « in Example 3

Absolute Absolute Absolute
X error by error by the | error by the
proposed method [5] | method [6]
method with 32 with 32
with 10 intervals intervals
intervals
0.08 | 3.27x10° 50x10+* 14x10*
024 | 940x10° 1.4%x1073 44x%x10°
040 | 1.46x10° 2.1x1073 6.7 x 107
0.56 | 1.84x10°° 22x%x1073 9.3 x 107
0.72 1.89 x 10~ 1.8x 1073 49 x10°
0.88 1.27x 107 9.0x10* 8.6x 107
096 | 499 x10-° 3.0x10+* 7.1x107

In this paper, we have developed a Galerkin method with
cubic B-splines as basis functions to solve a coupled
system of linear second order boundary value problems.
The cubic B-splines basis set have been redefined into a
new set of basis functions which vanish on the boundary
along with the nonhomogeneous part which takes care of
the prescribed boundary conditions. The solution of a
coupled nonlinear system has been obtained as the limit
of sequence of coupled linear problems generated by
quasilinearization technique. The proposed method is
applied to solve two linear problems and one nonlinear
problem to test the efficiency of the method. The
numerical results obtained by the method are in good
agreement with the exact solutions available in the
literature. The maximum absolute errors obtained by the
proposed method are less when compared with those of
available in the literature. The objective of this paper is
to present a simple technique to solve a coupled system
of second order boundary value problems.
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