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Abstract. The coalescence-induced droplet jumping on superhydrophobic surfaces has attracted

considerable attention over the past several years. Most of the studies on droplet jumping mainly focus the

droplet jumping on almost flat surfaces or ignore the effect of the microstructure. However, the
microstructure often exists on superhydrophobic surfaces, and this effect remains little noticed and poorly

understood. In this work, a simulation is carried out to investigate the effect of microstructure on droplet
jumping. The microstructure with a similar scale to the jumping droplet on superhydrophobic will affect the

jumping direction. The microstructure will improve the jumping velocity and change the jumping direction

of the droplet. This work will provide effective guidelines for the design of functional SHSs with controlled
and enhanced droplet jumping for a wide range of industrial applications.

1 introduction

On the superhydrophobic surface, the interaction
between the liquid bridge and surface promotes droplet
jumping when droplets coalesce. Jumping droplets can
contain dirt, condensate droplets and unfrozen droplets
on the surface so that the droplet jumping can be widely
droplet jumping is widely used in micro-flow control [1-
3], enhanced heat transfer [4-7], chip cooling [8-10],
self-cleaning surfaces [11-15] and other areas. For the
study of droplet jumping on a flat surface, Systematic
research on droplet jumping has been conducted through
experimental observations [16-19], theoretical analysis
[20-23], and numerical simulations [24-27], the well-
established understanding of droplet jumping. However,
The microstructure often exists on superhydrophobic
surfaces, and the current research on the effect of
microstructures on droplet bounce is not very sufficient.

Because the dynamic force of droplet jumping comes
from the surface reaction force, the surface structure has
a very significant impact on droplet bouncing. Vahabi et
al. studied the influence of triangular microstructures on
droplet bouncing. It was found that the microstructures
can greatly increase the ratio of surface energy released
by coalescence to jumping energy. The improvement of
energy conversion efficiency of droplet jumping can also
cause self-propelled droplet jumping of working
substances with low surface tension coefficient and high
viscosity[28]. Chen et al. studied droplet jumping on the
superhydrophobic surface with regular microstructures.
Although they did not directly discuss the effect of
microstructures on the jumping direction, it can be seen
from the image of droplet position change in their paper
that when the size of droplets is equal to that of
microstructures, the direction of jumping droplets
obviously deviates, which also appears in the study of
Watson et al. [17, 29]. Wang et al. found that the
interaction between bulge microstructures and liquid
bridges enhance droplet jumping, which increases the
energy conversion efficiency from 3.88% to 22.49%,
while the sag microstructures reduce the energy
conversion efficiency[30]. Attarzadeh et al. studied
droplet jumping on superhydrophobic surfaces of
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micropillars with different sizes. Relative roughness was
defined to characterize the effect of microstructural size
on droplet jumping. When relative roughness was greater
than 44, it could be considered that the surface was
smooth, since the microstructures did not affect droplet
jumping. When relative roughness was less than 44, the
effect of microstructures on droplet bouncing was more
significant[31]. The study of droplet jumping on an ideal
surface suggests that only when the surface is
superhydrophobic, droplet jumping can occur. However,
according to Zhang et al.'s research on droplet jumping
on fiber structure, although the fiber does not have high
hydrophobicity, droplet jumping still occurs after
coalesence[32]. Qu et al. observed droplet jumping on
the superhydrophobic surface with micropillars,
coalescence on the sidewalls of the micropillars leads to
self-propelled jumping in a direction nearly orthogonal
to the pillars and therefore parallel to the substrate[33].
At present, in the study of the effect of microstructures
on droplet jumping, some directly point out that
microstructures will affect the energy conversion
efficiency and jumping direction of the jumping droplet,
while others do not directly point out these effects, but
these effects can also be observed indirectly from the
experimental images displayed. In this work, two
droplets jumping on a superhydrophobic surface with
microstructures are simulated using the droplet jumping
numerical model we built previously[26, 34, 35], and the
effects of micro-structures on the jumping direction and
energy conversion efficiency were explored.

2 Numerical model

2.1 Numerical model

The numerical simulations used the interFoam solver in
OpenFOAM, which is based on the VOF [36]. The
governing equations for the continuity and momentum
equations are:

V-v=0 (1)
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where v is the velocity vector, ¢ is the time, p is the
pressure, and Fg is the source term generated by the

surface tension. p and u represent the average density
and dynamic viscosity of the fluid in the cell, which are
functions of the liquid volume fraction in the cell, a.

p=apwater +(1_a)pair (3)

/J:a/’lwater +(1_a)#air (4)

The volumetric force term generated by the surface
tension is calculated using the continuum surface force
model (CSF):

F,=ymwVa (5)

where y is the surface tension coefficient and «x is the
mean curvature of the free surface:

Va
H ©

2.2 Characteristic quantities and computational
domain

R, (the equivalent radius), to represent the total droplet

volume,
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where Rj is the radius of the jth droplet in the droplet
group.

When droplets coalesce on a superhydrophobic surface,
the gas-liquid interface area shrinks which releases some
surface energy,
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Part of the released surface energy is transformed into
kinetic energy of the jumping droplet,

EkzgﬂpudzRe3 )

where U s the velocity as the droplet departures from

the surface. The ratio of the jumping kinetic energy to
the released surface energy is defined as the energy
conversion efficiency,

n:Ek /AEs (10)

The mass-averaged velocity of the droplet is defined
as the droplet jumping velocity [37]:

(11)

where © represents the computational domain and
(u,w) are the velocity components in the horizontal and
vertical directions.

The distribution of droplets is shown in Fig. 1 The
centroid of the two droplets is parallel to the
microstructures. The radius of the droplets is R, and the
distance from the microstructures is D. The calculation
domain is set up in the same way as our previous studies.
The size of the calculation domain is 1x1x1 mm and the
mesh resolution is 150x150x150. The contact angle
between  the  superhydrophobic  surface  and
microstructures is 160°

The time resolution 6¢ is controlled by the maximum Co
(Co=max(|U]|)dt/dx, dx is the space step, max(|U)|) is the
largest velocity in the computation domain) number, and
the maximum Co number is set to 0.5 in this paper. The
superhydrophobic surface was set as a no-slip boundary
with the other boundaries as pressure outlet boundaries
[26, 27, 37]. As with previous experiments and
simulations, the gas and liquid physical parameters were
for air and water at 20°C [26, 38].

Microstructures Bottom Surface

Fig. 1. The position relationship between droplets and
microstructures. In this work, the effect of microstructural
height on droplet jumping is not discussed, so the
microstructures are applied to the calculation as a wall
boundary.

RESULTS AND DISCUSSION

Fig. 2 shows the evolution of droplet morphology over
time on a superhydrophobic  surface  with
microstructures. As shown in the figure, similar to the
conventional process of droplet coalescence, a liquid
bridge (0.06 ms) is formed between the two droplets at
the initial stage of coalescence, and then the liquid
bridge develops impact microstructures and bottom
surfaces and shrinks (0.12-0.36 ms). Under the reaction
force of microstructures and bottom surfaces, the
droplets separated from the bottom surfaces and
microstructures simultaneously (0.48-0.84 ms).
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Fig. 2.The droplet morphology evolution with time. The radius
of the two droplets is 100 um and the distance between the
droplets and the microstructures D=1.0R.

Fig. 3 shows the change of droplet centroid velocity and
position with time. As shown in Figure 3 (a), when
droplet coalesces and jumps on a superhydrophobic
surface with microstructure, the interaction between
microstructure and liquid bridge makes the droplet have
a certain horizontal velocity after leaving the surface,
and the horizontal velocity component is close to the
vertical velocity component. On superhydrophobic
surfaces without micro-structures, because of momentum
conservation, the horizontal velocity component of
droplets is 0. Microstructures can improve the energy
conversion efficiency of jumping. The vertical velocity
component of jumping droplets is larger than that of
droplets without microstructures, increasing from 0.217
m/s to 0.2838 m/s, and the energy conversion efficiency
of bouncing droplets increases from 5.38% to 16.57%.
As shown in Figure 3 (b), the jumping direction of
droplets on the superhydrophobic surface with
microstructures is approximately 48 degrees, while on
the superhydrophobic surface without microstructures,
the jumping direction of droplets is perpendicular to the
surface.

The interaction between liquid bridge and
microstructures, the energy conversion efficiency of
droplet jumping is improved, and the direction of
jumping is changed, so the position relationship between
liquid bridge and microstructures has a great influence
on jumping. After the two droplets with radius R are
fully coalescence, the large droplet radius R.=1.259R.
When the distance between droplets and microstructures

is large, the bridge can not contact the microstructures or
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Fig. 3. (a) The evolution of centroid velocity of spontaneous
jumping droplets in X and Z directions with time without
microstructures and with microstructures; (b) the evolution of
centroid position of jumping droplets on surfaces without
microstructures and with microstructures

the interaction between the microstructures and the
bridge is weak, which leads to the increase of energy
conversion efficiency and the change of jumping
direction. Figure 4 shows the evolution of droplet
morphology with time when the distance D=1.25R.
Compared with the case D=1.0R in Figure 1, in the early
stage of the development of liquid bridge (0.06-0.18 ms),
the liquid bridge will not contact the microstructure. In
the later stage of the development of liquid bridge, the
liquid bridge will be separated from the surface under
the reaction force of the microstructure and the surface
after a short contact between the liquid bridge and the
microstructure (0.30 ms).
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Fig. 4. The droplet morphology evolution with time. The radius
of the two droplets is 100 um and the distance between the
droplets and the microstructures D=1.25R.
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Fig. 6 shows the evolution of the horizontal and vertical
velocity of jumping droplets with time at different D. As
shown in Fig. 6(a), with the increase of the spacing D
between droplets and microstructures, the influence of
microstructures on the velocity of droplets decreases.
When the spacing increases to 2.0R, the microstructures
have little effect on the springing velocity. As shown in
Fig. 6 (b), with the increase of spacing D, the effect of
microstructures on the direction of jumping decreases
gradually, and the direction of jumping droplets
increases from 60° to 90°
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Fig. 6. (a) evolution of centroid velocity components in X and
Z directions with time at different spacing D; (b) evolution of
centroid position of springing droplets with different spacing D

Conclusions

In conclusion , In this paper, the effect of
microstructures on droplet jumping is studied by
simulation. Because of the interaction between the liquid
bridge and microstructures, the energy conversion
efficiency of droplet jumping increases, and the direction
of droplet bouncing changes. With the increase of the
spacing between droplets and microstructures, these
effects gradually weaken.
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