E3S Web of Conferences 128, 03003 (2019)
ICCHMT 2019

https://doi.org/10.1051/e3sconf/201912803003

Analysis of combustion, heat and fluid flow in a biomass furnace
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Abstract. A waste wood burning boiler with 200kW thermal power is investigated by experiments and

numerically. Temperature measurements are performed in the furnace and in the heat exchanger sections in
the downstream. Exit exhaust gas composition is also measured. Flow, heat transfer and combustion in the

furnace, and forced convection on the water side are numerically analyzed. The water side calculations are
used to obtain boundary conditions for the furnace by heat transfer coefficients. For validating the adopted

mathematical/numerical formulation, the predictions are compared with measurements. A satisfactory

agreement between the predictions and measurements is observed, confirming the validity of the applied

computational procedures.

1 Introduction

Fossil fuels have been and are still being used as the major
primary energy source for generation heat and of power
[1-3]. For fossil fuels, the combustion process has been
utilized for the conversion [4-8].

Parallel to the efforts for exploiting renewable energy
sources [9], as well as recovery techniques [10-12],
combustion continues to play an important role in power
generation, also through the renewable energies, due to
the significance of biomass in the latter [13-17].

Cogeneration is gaining importance as means of

improving energy savings, where it is especially
significant for decentralized systems, which is also an
increasing trend in structuring future energy supply [18-
22].

The present manuscript presents the first step of a
research project, which addresses biomass combustion, as
well as cogeneration. The purpose of the project is the
development of a waste wood burning boiler with a
simultaneous generation of electric power via
thermoelectric generators [11]. The purpose at this stage
is developing a validated numerical procedure.

2 The boiler

The boiler is a wood fuel one with a thermal power of 200
kW. The wood chips are transported by a screw at the

furnace bottom. Primary air is injected into the bed of

wood chips. The secondary air is injected as jets through
a number of nozzles. The combustion products lose heat
to boiler walls. To extract the remaining energy and feed
this into the water, the gas is conducted through two
passes of convective heat exchangers consisting of tubes
with twisted tape fittings. The boiler structure is depicted
in Figure 1.
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Fig. 1. Boiler schematic (indicating some measuring points)

3 Models

For simulations, the CFD code ANSYS Fluent 18.0 [23].
As Navier-Stokes solution procedure, the SIMPLEC [24]
scheme is used. To numerically discretize the convective
terms of the transport equations, a second-order upwind
scheme is used [25]. Turbulence modelling strategy has
been RANS (Reynolds Averaged Numerical Simulation)
[26].

3.1 Subdomains

A challenge was the coupling between different sub-
domains. The water and gas domains are treated
separately. The gas domain is also divided into two: the
furnace, and the exhaust tract.

At inlets constant values are applied as boundary
conditions for the variables. Turbulence quantities are
estimated assuming turbulence intensity of 5%, and the
hydraulic diameter. At the inlet of the exhaust domain, the
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furnace exit distributions are applied as boundary
conditions. Static pressure is prescribed at outlets. For
radiation, black surfaces are assumed at inlets and outlets.

Modelling the water domain, and the flow in the
exhaust track, the Shear Stress Transport (SST) model
[23,27] is used, which was successfully applied to predict
wall dominated turbulent flow and heat transfer, in many
cases [28-31].

The modelling of the furnace sub-domain is most
complex from the mathematical modelling point of view.
The fuel is transported by a screw at the bottom of the
furnace. From the side holes, primary and recirculating
exhaust gas is injected into the fuel bed. The secondary air
is injected by nozzles above the bed. The overall
equivalence ratio is 0.5 [32]. It is assumed that the sole
effect of primary air injection is a complete pyrolysis,
where the latter burns above the bed. The inlet boundary
is positioned above the bed, assuming a homogeneous gas
composition.

For the furnace, the k-¢ turbulence model (the RNG
version) is used [23,33], which is assumed convenient for
the furnace flow with free shear layers. Radiation heat
transfer [34] is important for the furnace domain. For its
modelling, the Discrete Ordinates Model is used [23,35],
which is known to be more accurate compared to P1 and
similar approaches [36,37].

The gas absorption coefficient is calculated by the
Weighted Sum of Gray Gases approach [23,38]. The ash
particles are neglected in calculating the flow. Their effect
on gas radiation properties is considered applying
procedures described in [39], where the implementation
was done by User Defined Functions [23].

Thermal boundary conditions at walls neighboring the
water domain are prescribed using the heat transfer
coefficients that are obtained from the calculation of the
water domain and assuming an emissivity of 0.8 for gray
walls. Internal walls that are exposed to gas on both sides
are assumed to be adiabatic.

The fuel composition was obtained by elementary
analysis. An analysis indicated that the pyrolysis products
can be modelled as a mixture of C;Hs and H». For its
combustion, a three-step reaction mechanism is assumed,
which is consisting totally of six chemical species (C,Hs,
H,, O,, H,0O, CO, CO;). To model the interaction of
turbulence and chemical reaction the Eddy Dissipation
Model [40] combined with Finite Rate chemistry (EDM-
FR) is used [23]. The chemical rate constants of the
chemical kinetics are deduced from the references
[41,42].

4 Experiments

To validate the results of the numerical work, the boiler is
analyzed experimentally. Mass flow rates of the primary
air, the secondary air and the exhaust gas recirculation, as
well as the corresponding velocity profiles, are measured
with pitot tubes. The temperature in the furnace (suction
pyrometer) and the heat exchanger (blank thermocouples)
is measured. In total, the temperature is measured at 26
positions. Three positions in the furnace are indicated in
Figure 1.

5 Results

A grid independence study was performed for all three
parts, i.e. the furnace, the exhaust, and the water domains.
An example of the grid independence study is shown in
Figure 2.

The calculation is performed with 1.26, 2.14, 5.21
million cells. The temperature varies between all three
meshes less than 1%. Thus the medium size grid is chosen
as an acceptable compromise.

The validation of the temperature distribution by
comparison with the experimental results obtained for the
furnace is shown in Figure 3. Here, the measuring points
are sorted in the downstream direction. One can observe
that the present prediction and the experimental results
show a quite good agreement, with a good overall
accuracy. Comparisons of the temperatures between the
experiments and the calculations in the exhaust track as
well as in the water domain show a comparably well
agreement.

The temperature distribution in the furnace is shown
in more detail in Figure 4. Because of the continuing
combustion reactions caused by the secondary air
injection, the temperature rises and high temperatures
occur in regions above secondary air jets. The flow
direction caused by the drift can also be seen looking at
the shape of the temperature pattern (Fig. 4). The mixture
continues to react in the downstream parts of the boiler,
and the conversion by combustion is completed before
reaching the first pass of the convective tubular heat
exchanger.

The measurements and calculations have shown that
quite huge amounts of heat are transferred to the water,
through the furnace walls, by convection and radiation,
before the exhaust gas stream reaches convective, tubular
hear exchangers on the downstream. This is also seen in
the temperature distributions displayed in Figure 3 and
Figure 4 that show a remarkable reduction of the gas
temperature.
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Fig. 2. Grid independence study for the furnace (point 010)
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Fig. 3. Validation of the temperature distribution in the furnace
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Fig. 4. Predicted temperature (in K) distribution of the furnace

The predicted temperature field in the both passes of the
convective heat exchanger is shown in Figure 5. The
distribution of the heat transfer coefficient on the outer
surfaces of the tubes and the flow pattern in the water side
are displayed in Figure 6.

Fig. 6. Predicted heat transfer coefficient at the cylinder walls
and streamlines inside the water domain
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6 Conclusion

A waste wood combusting boiler with 200kW thermal
power is analyzed. The numerical domain was divided
into three sections, the furnace, the exhaust, and the water
domains. It was observed that the prediction and the
measurements show a quite good agreement.

We gratefully acknowledge the financial support by the German
Federal Ministry of Economy and Energy.
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