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 Abstract. The numerical model of thermal processes in domain of biological tissue subjected to an 
external heat source is discussed. The model presented is based on the second order dual-phase-lag equation  
(DPLE) in which  the relaxation time and thermalization time (τq and   τT) are taken into account. In this 
paper the homogeneous, cylindrical skin tissue domain is considered. The most important aim of the 
research is to compare the results obtained using the classical model (the first-order DPLE) with the 
numerical solution resulting from the higher order form of this equation. At the stage of numerical                 
computations the Finite Difference Method (FDM) is applied. In the final part of the paper the examples of 
computations are shown. 

 
  

1 Introduction  

The problem of thermal processes occurring in the 
domain of skin tissue subjected to an external heat 
source is discussed. Recently there is the view that, 
taking into account the specific internal structure of the 
tissue, the hyperbolic type equations better than 
parabolic ones reproduce the actual course of the thermal 
processes taking place in the domain considered, e.g. [1- 
4]. In this paper the heat transfer in the tissue is 
described by the single, second-order DPLE (a 
homogeneous domain). In the further stages of the 
research, the system of these equations (the multi-
layered skin tissue domain) will be considered. The 
energy equation contains the additional components (the 
source functions) related to the blood perfusion and 
metabolism [5-7] just like the classic Pennes equation 
[8]. The starting point for the considerations concerning 
the DPLE is (as one knows) the generalized form of the 
Fourier law in which the lag times (the relaxation and 
thermalization times) are introduced. The left and right 
hand sides of generalized Fourier law are developed into 
the Taylor series with accuracy to the first derivative and 
next, after using this development in the energy 
equation, the first-order DPLE equation can be obtained. 
In this paper the second-order equation is considered, in 
particular the Taylor series with the accuracy to the 
second derivative is taken into account (e.g. [9]).  
The external tissue heating is determined by the 
Neumann boundary condition  (heat flux is given), the 
other boundary and initial conditions will be presented in 
the next chapter.  
The numerical algorithm presented in this paper is based 
on the FDM (the implicit scheme). Taking into account 
the form of assumed external heat flux, the axially-
symmetrical problem is considered. The original 
computer program that implements the numerical 
calculations has been prepared in such a way that it can 

be used for the first- and second- order equations as well 
as for the mixed variants. For example, in the several 
works - e.g. [10],  the second- order Taylor expression of 
heat flux and the first-order Taylor expression of 
temperature gradient are applied to take into account the 
phase lagging behavior. The system of equations 
corresponding to the transition from t to t+∆t is solved 
using the iterative Gauss-type procedure.   
In the final part of the paper the examples illustrating the 
differences in the solutions resulting from the 
applications of the first- and the second-order models are 
presented. 

2 Governing equations  

The starting point for the formulation of the energy 
equation with delays is the generalized Fourier law. In 
particular, the relationship between heat flux q and the 
temperature gradient T is given in the form 

   : , ,q TX X t T X t     q             (1)                
where λ   is   a   thermal   conductivity,   τq and   τT are the 
relaxation time and thermalization time, respectively, X = 
{r, z} and t denote spatial co-ordinates (cylindrical co-
ordinates) and time. 
Using the Taylor series expansions, the following  second-
order approximation of the formula  (1) can be taken into 
account  
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Depending on the assumed number of the components, 
the different forms of DPLE can be obtained. Using the 
known diffusion equation (in the case of  the constant 
values of thermophysical parameters) one obtains 
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           (3) 

where c is a volumetric specific heat, a=λ/c is a thermal 
diffusivity, Q is a capacity of internal heat sources, wq 
and wT which are equal to 0 or 1 determine the order of 
DPLE. In particular (0, 0) corresponds to the first order 
equation, (1, 1) corresponds  to  the  second  order  
equation, while (1, 0) or (0, 1) correspond to the mixed 
variants. 
The internal heat source according to the Pennes theory 
[9] is a sum of two components 

 ( , ) ( , )B B B metQ X t G c T T X t Q                           (4)          
where GB [m3 blood/m3 tissue/s] is a perfusion 
coefficient, cB is a volumetric specific heat of blood, TB  
is an arterial blood temperature, Qmet  is a metabolic heat 
source (treated here as a constant value). The basic 
assumption leading to the adopted form of the perfusion 
heat source is that the tissue domain is  supplied by a large 
number of capillary blood vessels uniformly distributed in 
the domain considered.  
Taking into account the formula (4) one has 
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The equation (5) can be written in the form 
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As one knows, in the case of axially symmetrical 
problem 
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The energy equation (6) must be supplemented by the 
boundary and initial conditions. In the case of the 
problem considered, the boundary conditions take a form 
of the Dirichlet and Neumann ones. Thus, on the bottom 
of the cylinder (z=Z) the body core temperature Tb is 
given. On the top of the cylinder (z=0) outside the 
domain of external heat source action and on the lateral 
surface (r=R) the no-flux condition is assumed. For r  ≤  
R0 (radius of external heat flux action) the boundary heat 
flux is equal to qb (Figure 1). The condition discussed is 
of the form 
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where ( , , )T r z tn denotes a normal derivative. One can 
see, that for the constant value of qb (r, z, t)  and also for the 
no-flux condition the equation (8) takes a simpler form. 
The initial conditions are also given 
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where Tp is  an   initial  temperature, while u(r, z) and 
v(r, z) are the known functions. For the first-order DPLE 
the function v is not defined. 

3 Numerical solution  

The algorithm presented below is based on the implicit 
scheme of the finite difference method (FDM). 
Let  , ( , , )f

i j i jT T r z f t    where  ∆  t is the time step, ri = ih, 

zj=jh (h is the mesh step in r and z directions) and 
f = 0, 1,…, F. Taking into account the initial conditions  
(9),   under   the  assumption  that u(r,z)=v(r,z)=0, one has 

0 1 2
, , , .i j i j i j pT T T T       For   the   successive      transitions 

t f−1 → t f  (f  3) the approximate form of equation (6) 
resulting from the introduction of the adequate differential 
quotients is as follows 
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where (c.f. formula (7)) 
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while s=f, s=f‒1  or  s=f‒2.  After  arduous  transformations  
one obtains 
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Fig. 1. The mesh. 

 

In the model presented, on the external surface of the 
system the Neumann boundary condition (8) is taken 
into account. The FDM form of this condition is the 
following  
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 Using introduced previously denotations one obtains 
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For example, on the lateral surface r=R one has 
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or 

 

 

1 14
, , 1 , , 1

3
2

2 2
, , 1

3

2

τ

f f f f
i n i n i n i n

f fT T
i n i n

B
T T T T

B

w
T T

B

 
 

 


   


 (18) 

The others equations corresponding to the Neumann 
boundary condition are also simple and similar to 
equation above presented. 

4 Results of computations  

The  cylindrical   domain of dimensions R = 0.03 m, 
Z= 0.03 m is considered. Radius of the surface on which 
the external heat source operates is equal to R0=R/4 (Figure 
1).  Thermophysical parameters of the biological tissue are 
the following [4]: thermal conductivity λ  =   0.5  W/(mK),  
volumetric specific heat of tissue c = 3 MW/(m3 K), blood 
perfusion rate GB =0.002 1/s, volumetric specific heat of 
blood cB = 3.9962 MW/(m3 K), blood  temperature            
TB =   37ºC,   metabolic   heat   source   Qm =245 W/m3, 
relaxation  time  τq =  15  s,  thermalization  time  τT= 10 s. For 
z = Z the Dirichlet condition Tb = 370C is assumed. Three 
variants of tissue heating corresponding to thermal dose 50 
kJ/ m2 are collected in Table 1. On the other surfaces of the 
cylinder the no-flux condition is accepted. The initial 
temperature of biological tissue is equal to Tp = 37 0C. 
 
  

Table 1.Variants of heating. 

 
Boundary 
heat flux qb 
[W/m2] 

Exposure 
time texp [s] 

qb  texp 

[J/m2] 

Variant 1 1000 50 50 000 
Variant 2 2500 20 50 000 
Variant 3 5000 10 50 000 
 

The problem is solved using the implicit scheme of the 
finite difference method under the assumption that the grid 
step is equal to h=0.0003 m (n=100, number of nodes 
10201)   and   time   step   is   equal   to   ∆t=0.01 s. Further 
compaction of the differential mesh did not change the 
results of numerical computations.  
In Figures 2, 3 and 4 the heating /cooling curves at the 
points (0, 0) and (0, 0006 m) are shown. The first-order 
DPLE solution is marked by a continuous line, while the  
second-order one is marked  by a dashed line. In the case 
of the second-order solution, the higher maximum tissue 
temperatures are obtained, and these maxima are shifted to 
the right compared to the first-order DPLE solution. 
Differences in the solutions are not too large, but in the 
case of the tasks related to the heating of biological tissue 
they become important (e.g. in the case of the burns 
modeling or the simulation of  hyperthermia treatment). 

 
Fig. 2. Temperature history - variant 1. 

 
Fig. 3. Temperature history - variant 2. 
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Fig. 4. Temperature history - variant 3. 

For the assumed input data the maximum values of 
temperature are equal to 
- first variant: Tmax=42,6 0C (after 50 seconds) and 

Tmax=42,9 0C (after 53.6 seconds), 
- second variant: Tmax=44 0C (after 22 seconds) and 

Tmax=44.8 0C (after 28.8 seconds), 
- third variant: Tmax=44.4 0C (after 14.3 seconds) and 

Tmax=45.3 0C (after 22.3 seconds). 
Generally speaking, the differences between solutions 
grow with the increase of the external source efficiency 
and the shortening of its exposure time. The testing 
calculations show that for the small values of qb (less than 
1kW/m2) the solutions resulting from the models discussed 
are practically the same and close to the classical Pennes 
model solution. In Figures 5, 6, 7 the courses of isotherms 
for t=texp, 0 ≤  r ≤  0.01  m  and  0  ≤  z ≤  0.005  are  shown. 

 
Fig. 5. Course of isotherms (variant 1) texp=50 s. 

 
Fig. 6. Course of isotherms (variant 2) texp=20 s. 

 
Fig. 7. Course of isotherms (variant 3) texp=10 s. 

 
Fig. 8. Temperature history - variant 1, τq=τT= 2 s. 

 
Fig. 9. Temperature history - variant 2, τq=τT= 2 s. 

The computations above presented have been repeated 
for  the  other  values  of  the  lag  times,  namely  τq=2 s and 
τT= 2 s (Figures 8, 9, 10). 
These significantly different from the previously 
assumed values of the delay times result from the 
considerations presented in the works [11, 12] in which 
τq and   τT are dependent mainly on the porosity of the 
tissue. Delays determined in this way are shorter than the 
most frequently reported in the literature (e.g. [5, 13]) 
and are similar to each other. The differences between 
both solutions are visible, although all geometric and 
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thermophysical parameters have been retained (except 
for delay times).  

 
Fig. 10. Temperature history - variant  3,  τq=τT= 2 s. 

5 Conclusions  

The basic goal of the paper was to compare the results of 
numerical solutions relating to the heating of biological 
tissue subjected to an external heat source. Two variants of 
dual-phase-lag equation have been taken into account, in 
particular the first- and the second-order DPLE have been 
considered.  To achieve this aim, an algorithm based on the 
implicit scheme of the Finite Difference Method has been 
developed. The 3D axially-symmetrical tissue domain has 
been considered. A large external radius of the domain was 
assumed and then on the lateral surface of the cylinder the 
adiabatic condition could be accepted. The system of 
equations associated with the transition from time t to time 
t+∆t was solved using the Gaussian iteration method. 
Differences between solutions corresponding to the first-  
and the second-order DPLE are clearly visible. In 
particular, they have a place in the case of the significant 
external source capacity (more than 1 kW/m2) and the 
rather short exposure time. 
Typical heating / cooling curves for the process under 
consideration and the small values of delays reach the 
maximum values on the heated surface (e.g. at the point  
(0, 0)) for t  ≈  texp. In  the inner  points  (e.g.  (0, 0.0005 m)) 
of the cylinder, the extreme value appears after a slightly 
longer time. The similar situation takes place for the larger 
values of delay times. 
The assumption concerning the values of delay times is 
very important for the results of numerical simulations.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Comparison of the solutions obtained for  τq=15  s  and  τT= 
5 s and the results corresponding   to   τq=2   s   and   τT= 2 s 
confirms the qualitative consistency of the results, but 
the numerical values are strongly different for both the 
first- and second-order DPLE. It can also be seen that for 
similar values of delay times the differences between 
solutions (see: Figures 8 - 10) are negligible.  
Summing up, it should be emphasized that the developed 
computer programs work correctly but their practical 
usefulness is determined by the adoption of the 
appropriate values of delay times. 
Further research will be carried out to take into account the 
layered structure of the skin tissue[12, 14] and, as a 
consequence, the modeling of boundary conditions at the 
interface between the skin layers. 
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