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Abstract. The paper presents simulations of laminar forced convection in 

non-circular piping of flat solar collectors made of ceramics or concrete, 

which are characterized by a low thermal conduction coefficient. The 

cross-sections of piping in the shape of a regular polygonal, elliptic, 

superellipse (Lamé curve) and Cassini oval were used for the calculations. 

In order to perform the simulation, a simplified two-dimensional model of 

laminar forced convection in a straight axis duct was used and the issue of 

H2 (constant axial wall heat flux with uniform peripheral wall heat flux) 

for materials with low thermal conductivity was applied. The calculations 

were made using the boundary element method (BEM) in a calculation 

program written by Fortran by the author. In the work, the number of 

Poiseuille, Nusselt and dimensionless parameters for the evaluation of heat 

exchangers such as the area goodness factor and the volume goodness 

factor were determined in the function of characteristic geometrical 

parameters of the assumed cross-sectional shapes of the flat solar collector 

piping.  

1 Introduction 

Solar collectors are widely used in the production of domestic hot water, heating and 

supporting other heating devices such as heat pumps. The solar collector converts solar 

radiation into thermal energy and then transfers it to the heating system. In order to increase 

the thermal efficiency of the solar collector, it is possible to optimize the solar collector by 

modifying the elements of the solar collector, e.g. by application of an absorber with a high 

solar absorption coefficient [1], adding turbulators in the risers [2], changing the shape of 

the solar collector's cross-section [3], replacement of thermal insulation of the solar 

collector with thermal insulation with a lower thermal conductivity or increasing the 

thickness of the thermal insulation layer on the solar collector housing [4]. The shape of the 

cross-section of the piping plays an important role in the transfer of heat by convection 

forced from the walls of the risers to the working heating medium [3]. The most commonly 

used shape in solar collector risers is a circular pipe. Other shapes of ducts can also be 

found in the literature, e.g. a cross-section of rhombic [5], elliptical [6] or rectangle risers 

[7]. Another parameter affecting the heat transfer from the piping wall to the working 
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medium is the thermal conductivity of the material from which the riser tubes are made. 

Solar collectors are often used with a high thermal conductivity, i.e. piping is made of 

copper or aluminum. Currently, flat solar collectors have also appeared, whose piping 

materials are characterized by low thermal conductivity, i.e. ceramic and concrete flat solar 

collectors. Examples of constructions and studies on ceramic solar collectors can be found 

in the literature [8–11]. An exemplary cross-section by a prototype ceramic solar collector 

made at the Department of Heat Engineering, Heating and Ventilation of Białystok 

University of Technology is presented in Figure 1. Teleszewski [12] presents a comparison 

of non-circular solar collector pipes using the boundary element method. In paper [12], the 

problem designated as H1 was adopted, which is dedicated for risers with high thermal 

conductivity, where the boundary condition is a constant temperature at the perimeter of the 

duct cross-section and a constant axial heat flux.  

In the case of ceramic and concrete flat plate collectors, where the thermal conductivity 

is small, according to the literature [13–15], the H2 problem should be adopted, in which 

the boundary condition is assumed as a constant axial wall heat flux density with uniform 

peripheral wall heat flux. The advantage of ceramic and concrete solar collectors is piping 

from ecological materials, that is concrete or ceramics. 

The aim of this study is to compare the different cross-sectional shapes of the solar 

collector piping with a small thermal conductivity using classical dimensionless quantities 

such as the Poiseuille number, Nusselt number, area goodness factor and volume goodness 

factor. The parameters the area goodness factor and the volume goodness factor can be used 

to compare different heat exchangers [16–18]. The shapes of the cross-sections of the 

regular polygon, Cassini oval and superellipse (Lamé curve) were adopted for the 

calculations. The work also determined the practical formula of the Nusselt and Poiseuille 

numbers in function of geometric parameters of the presented shapes. 

 

Fig. 1. Ceramic piping of the solar collector developed at the Bialystok University of Technology in 

the Department of HVAC Engineering. 

2 Problem description and mathematical formulation 

Figure 2 shows the calculation scheme and boundary conditions in the cross-section of the 

solar collector piping. In order to compare selected cross-sectional shapes of the solar 

collector piping with dimensionless quantities related to fluid flow and heat transfer,  

a simplified laminar forced convection model was adopted in straight ducts for a Newtonian 

fluid with a constant thermal conduction coefficient k and constant dynamic viscosity  for 

fully developed flow; in the body forces, viscous dissipation, and radiation heat transfer 

were neglected. For the above assumptions, forced convection for laminar flow in any 

cross-section of the straight duct is described by the continuity (1), momentum (2) and the 

energy equations (3): 
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where uz is the axial velocity, T is temperature, p is pressure, cp is specific heat capacity and 

 is density. 

In the case of condition H2 for walls constructed of materials with a low thermal 

conduction coefficient, the following Neumann boundary conditions are assumed:  
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Fig. 2. Geometry and boundary conditions in laminar forced convection by the solar collector piping. 

3 Numerical results and discussion 

The equations of momentum (2) and energy (3) were determined by the boundary element 

method [19]. First, the velocity field from equation (2) was determined, which is  

a condition in the cross-section area A for equation (3). A temperature field was determined 

from the energy equation (3). Details of the boundary element method algorithm for 

determining forced convection can be found in [19]. For the calculations, 4 000 constant 

boundary elements on the Lh boundary and 40 602 triangular cells in the A cross-section 

were used. The Poiseuille number is defined as a function of the Reynolds number and the 

coefficient of friction f: 
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where um is the average velocity, Dh is the hydraulic diameter, A is the cross-sectional area 

of the duct, while w is the peripherally averaged wall shear stress. The Nusselt number is 

described by the following relationship: 
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where Tw is the average temperature at the boundary of Lh, Tb is the bulk temperature and  

qw is the heat flux density. 

In order to verify the BEM method, the results of numerical calculations with the 

analytical solution for the square duct [13, 14] were compared. The relative differences for 

the geometry adopted above did not exceed 0.001% for the Poiseuille number and 0.005% 

for the Nusselt number. 

The following cross-section shapes were assumed for computer simulations, whose 

characteristic geometrical parameters  are described in Table 1: regular polygon, ellipse, 

superellipse with the assumption of equal minor to the major axis (a/b = 1), and Cassini 

oval.  

Table 1. Description of the characteristic geometrical parameters of the assumed shapes of the  

cross-sections of the flat solar collector piping. 

The shape of the cross section of the 

solar collector piping 

Description of the geometric 

factor  
Symbol of  

regular polygon 
number of sides of a regular 

polygon 
n 

ellipse 
ratio of the minor to the major axis 

for an ellipse 
A/B 

superellipse with the assumption of equal 

minor to the major axis (a/b = 1) 
exponent of the super ellipse e

Cassini oval ratio of the coefficients C and D C/D 

 

The method of determining the coordinates of the Cassini oval is presented in [12], 

while the superellipse is described by the following formula: 

+ =1

e e
x y

a b
        (7) 

The result of computer simulations is a formula showing the dependence of the 

Poiseuille number on the superellipse and the Nusselt number for the H2 problem for the 

shape of a regular polygon, elliptical, Cassini oval and superellipse in function of the 

characteristic geometric parameters : 
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where a, b, c, d, e, f, g, h, i, and m are coefficients shown in Table 2. The correlation 

coefficient for formula (8) is equal to R2   1. The dependences of the Poiseuille number as 

a function of geometric parameters for the regular polygon, ellipse and Cassini oval are 

presented in [12]. 

Figure 3a presents a comparison of the results of calculations of Nusselt numbers for the 

problem H1 [12] and H2 as a function of geometrical parameters for the cross-section shape 

of a regular polygon, elliptical shape, and Cassini oval. Figure 4 shows the Poiseuille and 

Nusselt numbers in function e for two H1 and H2 problems for the shape of a superellipse, 

assuming that the minor and major axes are equal. In the case of a circular tube, the values 

of the Nusselt number for the problem H1 and H2 are equal to each other due to the lack of 

sharp edges in the circle [10]. In the case of cross-sectional non-circular shapes, the Nusselt 

trend for H1 and H2 can be divergent, e.g. for an elliptical cross-section the Nusselt number 
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decreases with the increase of the geometric parameter  for the H1 case, while for the  

H2 case the Nusselt number increases with the increase of . The maximum value of the 

Nusselt number  (Nu = 5.11) for selected cross-sections of risers for the H2 problem has  

a Cassini oval cross-section for = 0.975. 

 

Table 2. Equation coefficients (8) for determining the Poiseuille and Nusselt numbers for selected 

shapes of the flat solar collector. 

Coefficients of equation (8) to determine the Poiseuille number 

shape a b c d e 

superellipse -2.9446 15.449 -13.308 17.121 -0.902 

 
f g h i m 

superellipse -1.089 0.4884 0.6941 -0.0158 2 

Coefficients of equation (8) to determine the Nusselt number (H2 case) 

 
a b c d e 

polygonal 112.85 -13.32 -46.019 13.572 0 

ellipse 0.0768 -2.376 108.44 14.12 0 

Cas. oval 4.3636 -7.1784 -1.709 8.148 -3.6049 

superellipse -34.482 197.466 -393.07 258.1875 46.06 

 
f g h i m 

polygonal 7.917 -10.6029 3.1102 0 2 

ellipse 2.609 16.034 7.918 0 2 

Cas. oval -1.6514 -0.0563 1.14904 -0.4364 4 

superellipse 32.3 -60.297 34.66 16.423 2 

 

        

Fig. 3. Comparison of Nusselt numbers (a) and the area goodness factor (b) for the H1 and H2 cases 

for the cross-sections with the shape of a regular polygon, elliptic and Cassini oval. 

   

)a )b
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 In order to compare the selected duct shapes, the area goodness factor G and the 

volume goodness factor VGF were used. In the classical definition, the area goodness factor 

is a function of the Colburn factor j and the Fanning friction factor f, but in the case of fully 

developed forced convection through a straight duct the Poiseuille and Nusselt numbers are 

independent of the Prandtl number, so it is possible to use a simplified form as a ratio of the 

Nusselt and Poiseuille numbers [2]: 

1/3
1/3

1/3

Nu Pr Nu
G= Pr G , Pr

PoPr Po

pcj j

f f k
    


   (9) 

where St is the Stanton number. In the assessment of heat exchangers, a higher area 

goodness factor means a lower flow area, therefore a higher value of area goodness factor is 

desired [13]. Figure 3b shows the comparison of the area goodness factor as a function of 

the geometric coefficient  for the shapes of a regular polygon, elliptic and Cassini oval, 

while Figure 4 shows the area goodness factor for a superellipse. In the case of  

cross-sections of non-circular shapes, the trends of area goodness factors for cases H1 and 

H2 are similar, while the numerical values of area goodness factors for the H2 issue are 

much lower than for the case of H1. The largest value of area goodness factor  

(Nu/Po = 0.27) for the H2 issue is equal to the shape of the Cassini oval with the geometric 

parameter = 0.975. 

 

 

Fig. 4. The Poiseuille number and the comparison of Nusselt numbers and the volume goodness 

factor of a superellipse for H1 and H2. 

The second method of comparing selected shapes is to use the volume goodness factor 

VGF, which is defined by the following relationship: 

1/3

St Nu
, St=

RePr
VGF

f
       (10) 

A high volume goodness factor requires a small volume to demonstrate the same 

performance in terms of heat transfer rate [13, 18]. To determine the volume goodness 

factor as a function of geometric factors, 50% propylene glycol mixtures were assumed, the 

properties of which are presented in Table 3 [20]. Figure 5 shows the comparison of the 

volume goodness factor for the H1 and H2 cases for the following solar collector pipes: 

square (= 4), circle (= 1000), Cassini oval (= 0.945) and superellipse (= 4). 
Analyzing the obtained VGF results, it can be seen that the volume goodness factor values, 
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as in the case of the area goodness factor for the H2 issue, are lower than the VGF value for 

the H1 issue. For example, in the case of a superellipse cross-section with a geometric 

coefficient of = 4, VGF for the H2 problem is 3.5% smaller than the VGF for the  

H1 issue, while for a square shape (= 4) VGF for issue H2, it is 14.3% smaller than VGF 

for H1. Differences between VGF values for H2 and H1 are greater for cross-section shapes 

that are characterized by a greater number of sharp edges or corners. In the case of  

a circular cross-section, VGF is equal for both H2 and H1. For selected cross-sectional 

shapes for the H2 issue, the highest VGF value is equal to a Cassini oval shape with  

a geometric coefficient equal to  = 0.975 and it is smaller by 9.9% than the maximum 

VGF value for the Cassini oval cross-sectional shape (= 0.945) [12] for the H1 issue. 

Table 3. Physical quantities for 50% propylene glycol mixtures [20]. 

Description Symbol Value Unit 

Dynamic viscosity of the working 

medium in the solar collector 
 0.002 kg/m/s 

Thermal conductivity of the working 

medium in the solar collector 
k 0.4 W/m/K 

Density of the working medium in the 

solar collector 
 1025 kg/m3 

Specific heat capacity of the working 

medium in the solar collector 
cp 3480 J/kg/K 

 

Fig. 5. Comparison of the volume goodness factor for the H1 and H2 cases for selected solar collector 

risers. 

4 Conclusions 

This paper presents a comparison in the aspect of forced convection of selected  

cross-sections of risers of a flat solar collector made of ceramic or concrete, which is 

characterized by a low thermal conduction coefficient. It should be noted here that the 

construction of solar collectors with ceramic or concrete piping is used rarely compared to 

solar collectors in which the piping is made of materials with a high thermal conductivity 

coefficient, such as copper or aluminum. A simplified model of laminar forced convection 
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was adopted for the fully developed flow in a straight axis duct for the H2 case, which is 

dedicated for materials with low thermal conductivity. The selected cross-sectional shapes 

were compared using the classic methods of area goodness factor and volume goodness 

factor. Based on the results of simulations made with the boundary elements method for 

selected cross-section shapes, the optimal solution is Cassini's oval for the aspect ratio  

= 0.975. It should be noted here that the methods area goodness factor and volume 

goodness factor are used for initial evaluation of heat exchangers, while a full assessment of 

thermal efficiency of heat exchangers should be done by experiment. 

The study has been implemented from the resources financed by the Ministry of Science and Higher 

Education in Poland (WZ/WBiIS/9/2019). 
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