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Abstract. The paper presents a two-step approach to identify bubbles and their properties such as average 

sizes, and nucleation frequency in a two-phase liquid flow near the heating surface under the nonstationary 

boiling conditions. The first step of the approach, namely bubble identification, is based on the conventional 

cross-correlation algorithm applied to an experimental image acquired from the high-speed camera using the 

bubble image templates manually assigned in advance. Further post-processing step uses temporal identified 

bubble data to evaluate bubble dynamic properties and track the evolution of local vaporization sites on the 

heating surface.  
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1 Introduction 

Currently, the study of two-phase bubble flows is 

important in the industrial field, as they are used in many 

technological and energy devices. The bubbles that form 

on the surface of the heater washed by the stream of 

subcooled liquid make a significant contribution to the 

heat flow, which depends not only on the total fraction of 

the vapor phase near the surface but also on the size and 

shape of the bubbles, nucleation rate, and density of 

nucleation centers [1]. Therefore, optical methods are 

widely used in studies of the bubble boiling stage [2, 3].  

Extracting statistical information about bubble boiling 

parameters requires processing hundreds of video frames 

with dozens of bubble images in each frame, which calls 

for automation of the recognition process of bubble 

images. This process is complicated by the fact that on the 

surface of the heater, besides the bubbles, there are also 

various irregularities, shadows and highlights, and the 

bubbles themselves differ from the surrounding liquid 

only by the refractive index, and can appear both as lighter 

and darker circles with/without borders and with/without 

highlights. Bubbles can also cast shadows on the surface 

of the heater, and then during the transition to film boiling 

regime, they merge, forming agglomerations. There are 

examples of successful identification of bubble images by 

the methods of segmentation of bubble contours [4] and 

using artificial neural networks [5]. This paper presents a 

method for processing bubble images based on the cross-

correlation of each frame with a set of sample bubble 

images typical of this series of experiments. The 

developed algorithm allows processing the video results 

for experiments with non-stationary heat generation in a 

semi-automatic mode [2]. This mode is characterized by 

extremely small sizes and short lifetime of bubbles (about 

0.05 mm and 0.2 ms, respectively), which creates 

increased difficulties in shooting and recognizing. 

2 Experimental rig 

Experimental data used for the research were obtained in 

a vertical channel with cylindric coreless heater (length 

120 mm, diameter 12 mm and wall thickness - 1 mm) 

sunken in water flow. The heating process is characterized 

by a very fast temperature growth (2500-6000 K/s) and is 

accompanied by vaporization under the nonstationary 

conditions. The heater surface has an average roughness 

of about 4 μm. For subcooling levels of 12 K, 42 K, and 

72 K, the bubble-boiling phase lasted no more than 30 ms 

and ended with a transition to the coalescence of bubbles. 

The initial pressure was about 0.11 MPa; the average flow 

velocity was 0.2 m/s. 

The lighting scheme proposed in [6] was applied to 

obtain high-speed and high-quality video. The green light-

emitting CVT-120 diode with a nominal power of 77 Watt 

was subjected to the short pulse current with a 4–5 times 

excess of the nominal amplitude. Such a short overload 

does not destroy the light-emitting diode and provides a 

high brightness light pulse. The short exposition of 5–10 

μs improves the sharpness of moving objects in the video 

frame. The videography rate was equal to 10240 fps at a 

spatial resolution of 1280×51 pixels. The diode emitting 

surface was small enough (12 mm2) to form a parallel 

light beam using a convex lens. 

Real-time sample video was converted into an image 

sequence for the further preprocessing stage. The 

preprocessing includes conventional background removal 

and image stabilization using VirtualDub and ImageJ 
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software. An example of a single experimental frame 

before and after the preprocessing is shown in Figs. 1(a) 

and 1(b). 

3 Bubble identification  

The experimental images of high-speed nonstationary 

processes often do not have high enough quality for 

further image processing due to the low spatial and 

temporal resolution of the optical system. Thus, the 

bubble detection becomes a difficult and sophisticated 

task. There is no universal automatic image processing 

software to detect bubbles on these images. Therefore, 

specialized software was developed. It includes two main 

components:  
1. Graphical user interface (GUI) developed in 

Microsoft Visual Studio C# for viewing experimental 

image sequences, editing image processing parameters, 

filling the sets of bubble templates, and visualizing 

identified bubbles with capabilities of import/export of 

results for further processing. 

2. The second component developed as Matlab.NET 

library realizes a bubble identification algorithm. The 

algorithm uses a well-known method of normalized cross-

correlation based on Fast Fourier Transform (FFT) [7]. 

The normalized FFT cross-correlation is a highly 

effective algorithm designed to find a template in input 

image through calculation and peak detection of 2D cross-

correlation function. 

To apply the normalized FFT cross-correlation to 

identification of bubbles, a semiautomatic template-based 

approach has been developed. The general flowchart of 

the approach is shown in Fig. 2.  
The approach includes the following four main steps 

carried out for each sample image from the frame 

sequence: 

1. Create a collection of bubble templates as a 

representative for the certain experiment conditions 

depending mainly on optic and lighting system. Bubble 

templates are added to the collection by manually 

selecting bubbles on the experimental frame image using 

the GUI component. A single collection of bubble 

templates can be assigned for a single frame or set of 

 
(a) 

 
(b) 

Fig. 1. Example of an acquired experimental single image: (a) original, (b) after preprocessing. 

 
Fig. 2. Flowchart of semi-automatic identification of bubble images for the sample frame. 
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sequential frames. Fig. 3 shows examples of the bubble 

templates. 

2. Assign image processing parameters (manually or 

by copying from previous frame processing) including: 

2.1. Global threshold value to filter normalized cross-

correlation function peaks. As a rule, this value can be 

assigned empirically from 0.6 to 0.9.  

2.2. Scaling intervals for each bubble template. Since 

bubble template from a collection should match as many 

similar bubble images of various sizes as possible, the 

original bubble template image should be resized to 

provide a maximal correlation value. Thus, a set of resized 

template copies is generated. The scaling interval limits 

the number of such new template copies. Lower and upper 

interval boundaries correspond to the expected minimal 

and maximal bubble sizes. Default values of scaling 

interval boundaries are 0.5 and 2, respectively. 

3. Identify bubbles through normalized cross-

correlation using a bubble template set according to the 

following procedure. 

3.1. Generate (for each template from representative 

collection) a set of additional bubble templates. The 

bubble image template is resized by bicubic interpolation 

with a step of one pixel within the scaling interval 

boundaries.  

3.2. For each bubble template image from the 

generated set: 

3.2.1. Calculate a 2D normalized cross-correlation 

function based on FFT. 

3.2.2. Find the cross-correlation peaks and filter the 

peaks by local and global thresholding. 

3.2.3. Find the maximal cross-correlation peak in a 

circle area of template diameter and filter other peaks to 

avoid overlapping duplicates. 

3.3. Summarize the resulting data containing 

correlation coefficients, coordinates and sizes related to 

each certain bubble template. Further, to filter redundant 

overlapping results related to different bubble templates 

the resulting records are limited by maximal cross-

correlation coefficients within the overlapped template 

circle areas. This filtering step is similar to step 3.2.3 and 

provides the best matching results over all bubble 

template collection. 

4. Edit manually the records of identified bubbles 

through the GUI. The step includes adding omitted 

bubbles and deleting erroneously identified bubbles. 

Fig. 4 presents an example of a real sample frame 

similar to that in Fig. 1 with identified bubble images 

marked as semitransparent orange circles.  

4 Post-processing 

To obtain data on the average maximum diameter and 

average nucleation rate changing with time in each 

experiment, the following sequence of actions is 

performed: 

Step 1. A total set of bubbles from all frames of the 

given experiment is formed. 

Step 2. The set is divided into clusters with a size of 

not more than the specified size d0. 

Step 3. A check is performed for the absence of 

bubbles, in which both the cluster and the time would 

coincide. If there are such bubbles, then step 2 is repeated 

with a smaller value of d0. 

Step 4. Each cluster is considered as the history of the 

appearance and growth of bubbles from one nucleation 

center. On this basis, for each cluster, a sequence of 

moments of reaching the maximum diameter and the 

periods between them are determined. The nucleation rate 

is taken as the reciprocal of the period. 

Step 5. For maximum diameters and frequencies, 

moving averages are constructed. In this case, for 

frequencies, the weight is 1, and for diameters, the weight 

corresponds to the volume of the bubble, since the volume 

determines to the greatest extent the amount of heat 

transferred by the bubble. 

Step 6. The moving averages are approximated by 

quadratic functions of time, and the values of the 

interpolating functions are extracted at N moments evenly 

filling the period of bubble boiling. 

As a result of the post-processing, we have for each 

experiment a sequence of N values of the average 

maximum diameter and N values of the average 

nucleation frequency as functions of time. 

In Step 2 of the above algorithm, the total array of 

bubbles is divided into clusters according to the following 

rules. 

                          

Fig. 3. Example of a representative collection of bubble templates. 

. 

 

Fig. 4. Identified bubble images (marked as orange circles) on the experiment frame obtained with the proposed semiautomatic 

cross-correlation algorithm. 
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a. Initially, the cluster list is empty. 

b. Bubbles are added to existing clusters one by one. 

c. If among the existing clusters there is such that the 

distance from its centroid to the bubble is less than d0, then 

the bubble is added to this cluster, otherwise, the bubble 

gives rise to a new cluster.  
Fig. 5 shows Step 5 of processing the maximum 

diameter values for an experiment conducted with a 

pressure in the cross-section of the video recording of 

0.175 MPa, an initial flow rate of 0.19 m/s, and an initial 

water temperature of 64° C.  
The density of nucleation centers and the fraction of 

the area occupied by the vapor phase are  found by directly 

summing over the initial total set of bubbles before 

clustering and extracting maximum diameters. Thus, 

bubbles are taken into account in all stages of growth, not 

only when achieving the maximum size. Fig. 6 shows the 

change in the diameters of the bubbles and the density of 

nucleation centers depending on the fraction of the area 

occupied by the bubbles in the same experiment.  

5 Conclusion 

To identify bubbles and their characteristics for the case 

of nonstationary surface boiling, an approach based on 

normalized cross-correlation with previously created 

bubble templates has been developed and implemented 

for real experimental images of poor quality. As a result 

of the processing, the dynamic characteristics of bubble 

boiling such as the density of nucleation centers, the 

fraction of the surface occupied by the vapor phase, the 

average maximum diameter, and the nucleation 

frequency, were extracted from video frames in a semi-

automatic mode. 

The work was carried out under State Assignment,  

Project 17.1.3 (reg. number АААА-А17-117030310443-

5) of Fundamental Research of Siberian Branch of the 

Russian Academy of Sciences and partly supported by the 

  
Fig. 5. Obtaining values of the average maximum diameter. 

 

 
Fig. 6. Comparison of dynamics of the density of nucleation centers, the fraction of the heater area occupied by the vapor 

phase and the average maximum diameters of the bubbles.  
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