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Abstract. Based on the experience of domestic and foreign researchers, it is known that there are various mathematical 

models, software systems, and optimization methods used to solve the set tasks for assessing the resource adequacy of 

electric power systems (EPS). However, the continuous development of EPS leads to the complication and integration of 

systems against the background of which it becomes necessary to take into account an increasing number of its elements 

and parameters in one task. Thus, for more effective (in terms of speed and accuracy) solutions of modified models, it is 

required to analyze and search the most appropriate set of optimization methods. In this connection, the purpose of this 

study is to analyze the applicability and the effectiveness of applying the method of differential evolution and gradient 

optimization methods for the model of minimizing the power deficit, which should be also compared. The article considers 

the analysis of the results of the work that optimization methods, studies were conducted on a test isolated EPS, with 

various tuning parameters. As a result, it was confirmed that these methods could be used to solve the problem. From the 

point of view of accuracy and resources expended on calculations, the most efficient among the implemented methods was 

the method of differential evolution, which was confirmed by numerical experiments on the small systems. 
Keywords: energy system, resource adequacy, power shortage, optimization methods, heuristic methods. 

 

1 Introduction 
Today's electricity consumers place high demands on 

ensuring the reliability of the electricity supply. This is 

due to the cost of a power failure with economic damage 

and situations dangerous to life and health of people that 

ensue. Interruption of electric power supply to consumers 

is due to failures of electric power system (EPS) 

equipment. In order to minimize the number of electricity 

constraints for consumers, it is necessary to implement a 

set of technical and organizational measures to improve 

the reliability of the EPS in advance. One of the main 

means of ensuring the reliability of the EPS is the early 

planning of the development of the system itself and the 

redundancy of its elements. Since maintaining the 

redundancy of generating capacities and the grid part of 

the EPS are costly measures, the justification of the 

redundancy of all types requires a qualified assessment. 

For this purpose, the resource adequacy of prospective 

EPS schemes is assessed. The result of the assessment is 

reliability indicators that lend themselves to an economic 

interpretation.  

One of the stages of the resource adequacy assessment 

when applying the Monte Carlo method [1] is to 

determine the power shortages of possible states of the 

EPS. The basis for computing power shortages is a 

simulation of the EPS, which includes a mathematical 

model of the EPS, as well as optimization methods to 

obtain the power shortage amount for each of the 

considered states of the system. The quality of the results, 

including the speed and accuracy of the calculation, the 

ability to solve problems with an increasing number of 

optimized parameters, depends on the applied 

optimization method and the correctness of the 

mathematical model. The statement of the problem of 

minimizing the power shortage can be presented both in a 

linear and nonlinear form [2]. The most adequate is the 

statement in the nonlinear form, where losses in power 

lines have a quadratic dependence on the transmitted 

power [3].  

In known practices at home and abroad, various 

optimization methods are used to solve this problem, so 

the "Amber" software and computer system (SCS) [4-5] 

makes use of the method of internal points, the "ORION-

M" SCS [6] employs a dual simplex method. At present, 

in the USA several different software and computer  

systems are adopted, namely: GE MARS [7], GridView 

[8], MARELI (PROMOD IV) [9], SAM (Supply 

Adequacy Model) [10], N-Area Reliability Program 

(NARP) [11], as well as PLEXOS [12] are all 

commercially available, closed projects (models and 

methods are not disclosed). In European countries, they 

use the RTE Antares Simulator open-source SCS with 

several customizable linear mathematical models and 

optimization methods developed by RTE. The employed 

methods are characterized by the accuracy and speed of 

the power shortage calculation. 

At present, in engineering applications, heuristic 

methods are increasingly used to solve optimization 

problems, and one of them is the method of differential 

evolution [13-14]. The method of differential evolution is 
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used to find the global extremum of non-differentiable, 

non-linear, multi-modal (possibly having a large number 

of local extrema) functions of many variables. At present, 

there are 5 efficient modifications of the method available 

but besides that, a great increase in the method's 

performance can be achieved by adopting the technology 

of parallel and vector calculations.  

 As it is known, heuristic methods often have low 

performance in comparison to direct optimization 

methods, because they mainly use the stochastic approach 

and more evaluations of the objective function of each 

formed solution. Applicability and efficiency of the 

method often depend on the problem being solved; this 

article covers the method of differential evolution in its 

original form, and its comparative analysis together with 

the method of conjugate gradients with respect to the 

problem of minimization of the power shortage is carried 

out.  
  

2 Problem statement 
 

The problem of minimizing the power shortage is 

formulated as follows: to determine the optimal flow 

distribution in an EPS for known values of operable 

generating capacities, required levels of consumers' loads, 

transmission capacities of EPS connections and power 

loss coefficients in EPS connections [1], [4-5]. There are 

several types of models for minimizing the power 

shortage, and this paper will apply a model with non-

linear balance constraints, which takes into account the 

quadratic power losses. Mathematically, the problem is 

formulated as follows: 

∑(�̅�𝑖 − 𝑦𝑖) → min
𝑦

𝑛

𝑖=1

, (1) 

when the balance constraints are respected: 

𝑥𝑖 − 𝑦𝑖 + ∑(1 − 𝑎𝑗𝑖𝑧𝑗𝑖)𝑧𝑗𝑖 −

𝑛

𝑗=1

∑𝑧𝑖𝑗 ≥ 0

𝑛

𝑗=1

,

𝑖 = 1, … , 𝑛 . 

(2) 

As well as constraints on optimized variables: 

0 ≤ 𝑦𝑖 ≤ �̅�𝑖 , 𝑖 = 1, … , 𝑛 , (3) 

0 ≤ 𝑥𝑖 ≤ �̅�𝑖 , 𝑖 = 1, … , 𝑛 , (4) 

0 ≤ 𝑧𝑖𝑗 ≤ 𝑧�̅�𝑗 , 𝑖 = 1, … , 𝑛, 𝑗 = 1,… , 𝑛, 𝑖 ≠ 𝑗 , (5) 

𝑧𝑗𝑖 ∗ 𝑧𝑖𝑗 = 0, 𝑖 = 1,… , 𝑛, 𝑗 = 1,… , 𝑛, (6) 

where: x_i  - power used in zone i (MW), ( x) ̅_i  - 

available power in zone i (MW), y_i  - the load served in 

zone i (MW), y ̅_i  - the amount of load in zone i (MW), 

z_ij - power flow from zone i to zone  j (MW), z ̅_ij - 

bandwidth of the power transmission line between nodes 

i and   j (MW), a_ji - specified positive coefficients of 

specific power losses during its transfer from zone j to 

zone i, j≠i, i=1,…,n, j=1,…,n. 

 

3 Minimizing power shortage 
 
Since model (1-6) is a non-linear programming problem, 

one can use various methods of conditional and 

unconditional optimization to solve it. However, this 

problem cannot be solved by standard methods of 

unconditional optimization due to various constraints that 

are of the type of equations and inequalities, for this 

purpose it is necessary to transform the objective function 

and all constraints into those of the single objective 

function type or apply optimization methods, where these 

constraints act as parameters of the optimization method. 

In the present studies, the penalty function method is 

applied to the transformation of a conditional 

optimization problem to an unconditional one.  

The penalty function method can be applied to 

optimization problems with various types of constraints. 

The method enables us to transform an initial problem 

with constraints into a problem, the solution of which can 

be obtained by methods of unconditional optimization. 

Such transformation allows not only to use various 

methods of unconditional optimization but also to 

increase the accuracy of calculations given the correct 

selection of setup parameters. The main changes are made 

to the objective function that has constraints added to it in 

the form of penalty functions. Thus, changes in the system 

can result in triggering the penalty function, the value of 

which will begin to increase dramatically. In this case, the 

response to the penalty will be regulated by the 

optimization method and, ultimately, the function will be 

directed to the desired solution. 

The studies of the power shortage search that is 

efficient in terms of time and effort were conducted within 

the framework of the following sets of methods: a set of 

methods of penalty functions and the method of conjugate 

gradients with the Fletcher-Reeves coefficient, where the 

step length value is calculated as the Armijo rule, as well 

as a set of methods of penalty functions and differential 

evolution. The complete study included a larger set of 

methods that were also implemented programmatically, 

but due to the inefficiency of some of the methods, they 

passed only the first stage of the studies with their results 

presented in the part of this article that deals with 

experimental studies. The complete list of implemented 

methods included: the gradient descent method, steepest 

descent method (with and without step normalization), 

conjugate gradient method (the variants that come with 

Fletcher-Reeves and Polak–Ribière coefficients) and 

differential evolution method. The following algorithms 

have been implemented as one-dimensional optimization 

and line search methods to calculate the step length value 

in the steepest descent method and conjugate gradient 

method: 2 different algorithms of the Golden-section 

method, the combined Brent's method, the Powell's 

method, methods based on the Armijo rule conditions, the 

strong Wolfe conditions, the Armijo–Goldstein 

conditions, the parabolic method. Due to the instability of 

the obtained results, most of the above described one-

dimensional optimization methods were not used. The 

main method to be tested was the line search by the 

Armijo rule. 
 

3.1 Algorithm of the employed conjugate 
gradient method 
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The conjugate gradient method is an iterative numerical 

method (of the first order) for solving optimization 

problems, which allows us to determine the extremum 

(minimum or maximum) of the objective function [15-

17]. The conjugate gradient method is a further 

development of the fastest descent method, which 

combines two concepts: the gradient of the objective 

function and the conjugate direction of vectors. In general, 

the process of finding the minimum of a function is an 

iterative procedure, the algorithm of which can be 

described by the following set of steps: 

Step 1: Analytical expressions (in their symbolic 

form) are defined to calculate the gradient of function 

∇f(x_1,x_2,…,x_n ) using formula (7) 

∇𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) =

[
 
 
 
 
 

𝜕𝑓

𝜕𝑥1
𝑓(𝑥1, 𝑥2, … , 𝑥𝑛)

𝜕𝑓

𝜕𝑥2
𝑓(𝑥1, 𝑥2, … , 𝑥𝑛)

…
𝜕𝑓

𝜕𝑥𝑛
𝑓(𝑥1, 𝑥2, … , 𝑥𝑛)]

 
 
 
 
 

 ; (7) 

Step 2: The initial approximation is set 𝑋 =
{𝑥1, … , 𝑥𝑛}  

Then the iterative process is performed. 

Step 3: The necessity to restart the algorithmic 

procedure for zeroing the last direction of search is 

determined. As a result of the restart, the search is carried 

out anew in the direction of the steepest descent. 

Step 4: The coordinates of unit vector 

 𝑆𝑘(𝑥1, 𝑥2, … , 𝑥𝑛)  are calculated using the formula 

obtained in Step 1, and the coordinates of the new point 

are determined when moving in the direction of the unit 

vector as a function of the calculation step. 

calculation of the weight coefficient and unit vector of 

conjugate directions at the current calculation step (the 

Fletcher-Reeves formula): 

- for the first step of the calculation (𝑘 = 0), the 

weighting coefficient is not calculated (the same applies 

to the case of the algorithm restart), and the unit vector of 

the conjugate directions is determined as follows: 

𝑃0 = ∇𝑓(𝑋0), (8) 

- for the following calculation steps (k=1,2,…), the 

weighting coefficient and unit vector of the conjugate 

directions are calculated on the basis of the following 

ratios: 

𝛽𝑘 =

∑ (
𝜕𝑓(𝑥1,𝑥2,…,𝑥𝑛)

𝜕𝑥𝑖
)

𝑘

2
𝑛
𝑖=1

∑ (
𝜕𝑓(𝑥1,𝑥2,…,𝑥𝑛)

𝜕𝑥𝑖
)

𝑘−1

2
𝑛
𝑖=1

, (9) 

𝑃0 = ∇𝑓(𝑋𝑘) + 𝛽𝑘 ∙ 𝑃𝑘−1. (10) 

In this case, the coefficient calculated using the 

Fletcher-Reeves formula is presented as a formula below 

formula (9). 

Step 5: we determine the calculation step length based 

on the condition of the extremum search for the following 

function 𝐹 = {𝑥𝑘 ± 𝜆 ∙ 𝑃𝑘(𝑥𝑘)} (the solution of the one-

dimensional optimization problem). 𝜆𝑘 ⟹ 𝑓{𝑥𝑘 ± 𝜆 ∙
𝑃𝑘(𝑥𝑘)} → 𝑒𝑥𝑡𝑟 

Step 6: New values of the function arguments are 

defined after the k-th step of the calculation: 

𝑋𝑘+1 = 𝑋𝑘 ± 𝜆𝑘 ∙ 𝑃𝑘 , (11) 

where the "+" sign is used to find the maximum of a 

function and the "-" sign is used to find the minimum of a 

function; 

Step 7: Checking the stopping criteria of the iterative 

process. The calculational process ends when the point at 

which the gradient estimate is zero (response function 

coefficients become insignificant) is reached. Otherwise, 

there is a return to Step 3 and the iterative calculation 

continues. 

To find the step length value, one has to solve the 

problem using one-dimensional optimization methods.  

However, in practice, a complete solution of the problem 

is either not achieved due to the complexity of the 

function or it takes a large amount of time and internal 

iterations to find a solution. A different approach can be 

used to reduce the number of operations: the values of the 

calculation step length are selected so that they meet the 

condition presented below. 

The condition (the Armijo rule) is an adaptive method 

of searching for the value of the calculation step length, 

which indicates that function 𝑓{𝑥𝑘 ± 𝜆 ∙ 𝑔(𝑋𝑘)} should 

not exceed the value of some decreasing linear function 

equal to  𝑓(𝑋𝑘) at the zero point: 

𝑓{𝑥𝑘 ± 𝜆 ∙ 𝑔(𝑥𝑘)} ≪ 𝑓(𝑋𝑘) ± 𝜎 ∙ 𝜆 ∙
∇𝑓𝑘 ∙ 𝑔(𝑋𝑘), 

(12) 

where coefficient σ∈(0,1) and the calculation step 

length λ  are determined iteratively by multiplying the 

initial step length λ_0   by  coefficient β∈(0,1)until the 

condition is met.  

The algorithm for determining the optimization 

problem calculation step length as per the Armijo rule can 

be represented by the following procedure: 

Step 1. Set coefficient σ within the range from 0 to 1 

and the initial step length valueλ_0. 

Search procedure (verifying that the the Armijo rule 

condition is respected)  

Step 2. If the Armijo rule condition  is not met, then it 

is necessary to adjust the calculation step length  λ_k= λ_0  

∙β^k, where variable β can take any value from 0 to 1. By 

default, variable β is assigned a value of 0.5, and k is the 

current iteration number of the search.  

Step 3. If the Armicho rule condition is met, then the 

calculation step length can be assumed to be λ=λ_k and 

the search procedure is completed.  

This rule requires a single calculation of the gradient, 

after which a small number of iterations are spent on 

selecting the appropriate step length. Each of these nested 

iterations, in turn, requires the value of the objective 

function to be calculated without a gradient, i.e. the tests 

performed are relatively lightweight. It should be noted 

that this condition is satisfied for all sufficiently small λ.  

It should be noted that in the course of the studies the 

corrective values were selected independently and were 

determined as β=0.85, with coefficient σ= 10e-4,, under 

the conditions of experiments, the number of iterations 

spent on the search did not exceed 14, and in general, this 

rule had a high rate of convergence and also provided 
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sufficient accuracy of the calculation step length for 

optimization methods. 
 

3.2 The algorithm of the adopted method of 
differential evolution 

 
Differential evolution is a method of multi-dimensional 

mathematical optimization that belongs to the class of 

stochastic optimization algorithms and uses some of the 

ideas of genetic algorithms but does not require working 

with variables in the binary code [18-20].  

This method requires only the possibility to calculate 

the values of the objective functions, but not those of its 

derivatives, so it is a direct "method". Differential 

evolution is intended to find a global minimum (or 

maximum) of non-differentiable, non-linear, multi-modal 

(a large number of local extrema) functions of many 

variables. The method is easy to implement and use (it 

contains few control parameters that require their 

selection) and can be parallelized.  

The algorithm of the method of differential evolution 

can be represented as follows: 

 Step 1. Initialization of the population: 

 a) form N vectors with random values within the 

upper and lower constraints on the variables: 𝒙𝒊, 𝒚𝒊, 𝒛𝒊𝒋 

formulas (3-5); 

b) set a constraint on the number of generations 

c) calculate the values of the objective function for 

vectors; 

A cycle through all vectors of the population. 

Step 2. A mutation: 

  a) select the objective vector (each vector from the 

population, for example, R1); 

  b) select 3 different vectors (R2, R3, R4) at random; 

  c) set the mutation scale factor F = [0, 1]; 

  d) calculate a new "mutant vector" MV = R2 + F * 

(R3 - R4); 

Step 3. Cross-breeding: 

  a) set the mutation probability coefficient CR = [0, 

1]; 

  b) form a vector of random numbers P  ∈[0, 1] with 

the number of dimensions equal to that of R1  

  c) form a "child vector" CH, the ordinal number in P 

is greater than CR, the gene from is inherited from R1 or, 

otherwise, MV. 

  d) evaluate the objective function for CH vector 

values; 

Step 4. Selection: 

  (a) Compare vectors R1 and CH; 

  b) introduce a vector with a lower value of the 

objective function into the new population.  

Go to Step 2 as part of the cycle. 

Step 5.  Check whether the limit on the number of 

generations has been reached. 

 

4 Experimental studies of optimization 
methods to solve the problem of power 
shortage minimization 
 

Within the scope of the studies and the software 

implementation of algorithms and mathematical models a 

personal computer with the suite of software products and 

technical specifications indicated in Table 1 was used.  

 

Table 1 Technical and software specifications 

CPU  Intel(R) Core i7-8700K @ 

3.70GHz, boost 4.50GHz, 6 

physical cores, Hyper-Threading 

RAM DDR4 16.0 GB, 15/15/15/36, 2133 

MHz 

OS Windows [Version 10.0.17134.765] 

Delelopment 

environment 

CLion 2018.3.4 [Build #CL-

183.5429.37, built on February 1, 

2019] 

Build 

environment 

MinGW w64 6.0 [x86_64-8.1.0-

posix-seh-rt_v6-rev0] 

Compiler GCC [version 8.1.0] [C++] 

Programming 

Language 

C++ [17] 

 
At the first stage of the studies, the correctness of the 

implementation of gradient methods and the method of 

differential evolution was tested. For this purpose, widely 

known special functions with known minimum values 

were used. First of all, the testing was carried out on the 

Rosenbrock function [21], a non-convex function used to 

evaluate the performance of optimization algorithms 

proposed by Howard Rosenbrock in 1960. The 

Rosenbrock function for two variables is defined as: 

𝑓(𝑥, 𝑦) = (1 − 𝑥)2 + 100(𝑦 − 𝑥2)2, (13) 

It has a global minimum at point (𝑥, 𝑦)= ( 1 , 1 ), where 

 𝑓(𝑥, 𝑦) = 0. 

Launching each of the software implemented methods 

has shown that all of them find a global minimum when 

setting different levels of accuracy. Thus, the following 

accuracy parameters were used for gradient descent 

methods: 1e-6.  

 

Table 2. Comparative characteristics of methods 

Method 

Result The 

number of 

function 

evaluations 
(𝑥, 𝑦) 𝑓(𝑥, 𝑦) 

Gradient 

descent 

(0.999999, 

0.999999) 

1e-11 Gradient 

descent 

Steepest descent (1, 1) 0 Steepest 

descent 

Conjugate 

gradient 

(1, 1) 0 Conjugate 

gradient 

Differential 

evolution 

(1, 1) 0 Differential 

evolution 

   

As can be seen from the results, the required accuracy 

of calculations is achieved, the result is unambiguous. The 

comparison of the number of iterations cannot provide an 

unbiased assessment of the amount of performed 

calculations, because the method of the steepest descent 

and that of conjugate gradients, in addition to the basic 

iterations, perform a one-dimensional step length search, 
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which also includes the evaluation of the function, while 

the method of differential evolution on the first iteration 

forms a population of 20 random vectors, after which 

there is a change of generations reaching up to 300 of 

them. Thus, the most unbiased way to compare these 

methods is to estimate the number of calls to the 

calculations of the objective function value. However, one 

should also take into account that besides evaluating the 

function, gradient methods also calculate the gradient 

(that of the derivative of each variable), which also makes 

the calculations heavier and greatly affects the speed of 

the algorithms. At the same time, the method of 

differential evolution calculates only the values of the 

objective function. 

At the second stage of the study, the efficiency of the 

software implemented methods was assessed as applied to 

the problem of minimizing the power shortage. The 

studies were conducted based on mathematical model (1-

6). The 3-zone system was chosen as the system to be 

tested test, which is an isolated EPS with the "ring" 

topology (see Figure 1), made up of three zones of 

reliability and three inter-zone links, presented in the 

figure as nodes of the graph and its edges, respectively.  

 
Fig. 1. The diagram of an isolated 3-zone system. 

 

 𝛾 = 10 was chosen as the initial parameter of the 

penalty function method with its subsequent increase up 

to 1,000 with the 10 times increase step. However, as 

evidenced in practice, the change of coefficient 𝛾 with its 

subsequent increase is required only for the conjugate 

gradient method that is gradually approaching the desired 

solution, while in the case of the method of differential 

evolution it is enough to specify the coefficient once to 

obtain the final solution.  

The results of the performance of the conjugate 

gradient method in one of the numerous experiments are 

shown in Table 3.  

 

Table 3The values calculated by the conjugate gradient 

method 

 Constrai

nts 

 
Soluti

on  

𝛾
= 10 

Soluti

on   

𝛾
= 100 

Soluti

on   

𝛾
= 1000 

Corre

ct 

soluti

on 

 

�̅�1 
158 𝑥1 99.5 

100.9

7 

100.9

9 
101 

�̅�2 
109 𝑥2 

106.6

8 
107.9 

107.9

8 
108 

�̅�3 83 𝑥3 83.11 83 83 83 

�̅�1 91 𝑦1 91 91 91 91 

�̅�2 98 𝑦2 98 98 98 98 

�̅�3 201 𝑦3 93 93 93 93 

𝑧1̅2 10 𝑧12 0,22 0,01 0,01 0 

𝑧2̅1 10 𝑧21 0 0 0 0 

𝑧1̅3 10 𝑧13 8.49 9.96 9.98 9.99 

𝑧3̅1 10 𝑧31 0 0 0 0 

𝑧2̅3 10 𝑧23 8.49 9.96 9.98 9.99 

𝑧3̅2 10 𝑧32 0 0 0 0 

  𝑎 
0,000

05 

0,000

05 

0,000

05 

0,000

05 

As can be seen from Table 3, the solution matches the 

required correct values within the permissible error of 1% 

that occurs due to the numerical instability of the penalty 

function method and the error of representation of real 

numbers in the computer memory.  

The following values were used as setup parameters 

for the method of conjugate gradients: the accuracy of the 

calculations: 10e - 6, the restart point was set at 18 

iterations (chosen experimentally), the maximum number 

of iterations was 50,000. Then, an experiment was carried 

out to calculate the solution to the problem of minimizing 

the power shortage with various starting points. The 

minimum number of method iterations was 1,422; the 

maximum number of method iterations was 6,793; on 

average, 3,776 iterations were required to obtain a proper 

solution, the average number of calls to the evaluation of 

the objective function was 46,332 times, and the average 

gradient was calculated 3,776 times, which corresponds 

to the average number of iterations.   

After that, the method of differential evolution was 

tested with the penalty coefficient 𝛾 = 10 set as setup 

parameters, the number of populations was 96, the 

mutation coefficient 𝐹 = 0.5 (this coefficient was chosen 

experimentally and provides the best results of the 

convergence rate of the method), the coefficient of 

crossover speed was 0.9, and the maximum number of 

generations amounted to 1,500.  

As a result of the application of the method of 

differential evolution, the solution was obtained using 

only one penalty value 𝛾 = 10. The final solution is 

presented in Table 4.  

 

Table 4.The values calculated by the differential 

evolution method 

 Constraints  Solution 

𝛾 = 10 

Correct 

solution 

�̅�1 158 𝑥1 100.99 101 

�̅�2 109 𝑥2 107.98 108 

�̅�3 83 𝑥3 83 83 

�̅�1 91 𝑦1 91 91 

�̅�2 98 𝑦2 98 98 

�̅�3 201 𝑦3 93 93 

𝑧1̅2 10 𝑧12 0 0 

𝑧2̅1 10 𝑧21 0 0 

𝑧1̅3 10 𝑧13 9.98 9.99 

𝑧3̅1 10 𝑧31 0 0 

𝑧2̅3 10 𝑧23 9.99 9.99 

𝑧3̅2 10 𝑧32 0 0 

𝑥1, 𝑦1 

𝑥2, 𝑦2 

𝑥3, 𝑦3 

𝑧13, 𝑧31 
1 

2 

3 

𝑧23, 𝑧32 
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  𝑎 0,00005 0,00005 

As can be seen from Table 4, the solution also matches 

the required correct values within the permissible error of 

1%, which occurred due to the error of representation of 

real numbers in the computer memory and the numerical 

instability of the penalty functions method. The minimum 

number of method iterations was 680, the maximum 

number of method iterations was 1,500, on average 943 

iterations were required to get a "proper" solution, the 

average number of calls to the evaluation of the objective 

function was 56,688 times, but such operations are 

deemed to be lightweight and do not require heavy 

additional calculations.  
5 Conclusion 
The speed and accuracy of solving the problem of 

minimizing the power shortage have an effect on 

obtaining adequate values of the EPS reliability indicators 

and on further solving of the subsequent problems, for 

example, the justification of the EPS redundant generating 

capacity. The problem of minimizing the power shortage 

is non-linear and non-convex, so it is required to apply 

appropriate methods to solve it. The paper treats the issue 

of applicability and efficiency of the solution by methods 

of conjugate gradients and differential evolution. 

Experimental studies have shown that both methods 

enable us to solve the problem with a given accuracy, but 

the effort for solving this problem is different. Since it is 

not sound to compare methods by the number of iterations 

spent on arriving at the solution, because the effort taken 

by iterations of each method varies greatly, it was 

suggested to compare the number of evaluations of the 

objective function. Backed by the analysis of the 

performance of the methods, distinguishing features of the 

method of differential evolution may be highlighted. 

Namely, there is no need to take into account the 

constraints of the maximum and minimum values of the 

level of generation, loads, and bandwidth at the level of 

penalty functions, since these constraints are addressed at 

the level of the method itself. Furthermore, there is no 

need to increase the value of the parameter of the penalty 

with the subsequent calculation, because the method 

works correctly with the value of the penalty equal to 10. 

Despite the fact that the method of differential evolution 

evaluates the objective function 10,356 more times than 

the conjugate gradient method, it is necessary to take into 

account that such calculations are more lightweight, 

because the objective function is free of some of the 

penalties, and there is no need to calculate the function 

gradient at each iteration.  

Thus, the method of differential evolution was 

determined as the most efficient among the implemented 

methods in terms of accuracy and resources spent on 

calculations, which is confirmed by numerical 

experiments performed for small systems. 
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