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Abstract. Results of numerical investigation of dynamic behavior of 

deformed wing aircraft in a gas flow are presented in the paper. Vibrations 

with respect to deflections are described by a system of integro-differential 

equations in partial derivatives. Using the Bubnov-Galerkin method, the 

problem is reduced to a system of ordinary integro-differential equations, 

where time is an independent variable. The solutions of integro-differential 

equations are determined by a numerical method based on the use of 

quadrature formulas. Computational algorithms and a package of applied 

programs have been created to solve problems on nonlinear flutter of 

viscoelastic elements of an aircraft. The reliability of the solution of the 

problem is confirmed by comparison with known numerical and analytical 

results. The effect of different boundary conditions on critical flutter 

velocity is studied. Critical velocity and critical flutter time of viscoelastic 

plates are determined. It is shown that the singularity parameter  affects 

not only the vibrations of viscoelastic systems, but also critical time and 

critical flutter velocity. It is stated that consideration of viscoelastic 

properties of plate material leads to 40 - 60% decrease in critical flutter 

velocity.  

1. Introduction 

Enormous scale of the development in aviation industry and shipbuilding necessitates the 

further development of the theory and practice of mathematical simulation. The study of 

structure material with viscoelastic and nonlinear properties, the consideration of which has 

great theoretical and practical importance, approximates the theory of calculation to the 

actual conditions of structure operation. Therefore, the problems of the theory of hereditary 

elasticity attract serious attention of researchers. 

Of particular interest are the nonlinear problems of the theory of hereditary elasticity, 

which, apart from their practical importance, are of considerable scientific interest in the 

spheres of mechanics, mathematical physics and computational mathematics. This is due to 

the fact that nonlinear problems of the theory of hereditary elasticity are reduced to 

boundary and initial-boundary value problems for nonlinear weakly singular integral-
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differential equations withpartial derivatives, the complete investigation of which is 

connected with the development of new methods for solving weakly singular integral-

differential equations. 

The above-mentioned scientific problem gives grounds to assert that the development of 

adequate mathematical models, numerical methods and algorithms for solving nonlinear 

integral-differential equations of dynamic problems of the hereditary theory of 

viscoelasticity is actual. 

In connection with this, the development of mathematical models of individual elements 

of aircraft made of composite material is becoming very important. 

One of the main difficulties for a complete understanding of the supersonic flutter 

phenomenon is the fact that critical velocity of the flutter depends on a large number of 

parameters. At present, the difficulty in isolating many of these factors in experimental 

study does not allow us to obtain a satisfactory agreement between experimental and 

theoretical results.In literature there are numerous reviews of the problem under 

investigation. An extensive bibliography is given by Marco Amabili [1, 2], Farbod Alijani 

and Marco Amabili [3], Y. Wang and Z. M. Wang [4]. The development of problems on the 

flutter-plate strip, plates and panels with account of viscoelastic properties of structure 

material is reflected in publications by Mojtaba Asgari, Mohammad Reza Permoon, Hassan 

Haddadpou [5], Tytti Saksa et al. [6], Wei Tao Zhao, Tian JunYu, Xiao Dong Yang [7], 

Mouafo T.A. Robinson, Sarp Adali [8], Mouafo T.A. Robinson, Sarp Adali [9], Xiaochen 

Wang, Zhichun Yang, Wei Wang, WeiTian [10], B.Kh.Eshmatov et al. [11], M.Mirsaidov 

et al. [34, 35] and others. In [5-9], the Kelvin-Voigt model is used to describe the strain 

processes occurringin viscoelastic materials. 

As is known, exact solutions to the problem of flutter, even in the simplest cases, are 

non-existent to this day. Therefore, there are different opinionsregarding the effect of 

viscoelastic properties of structure material on critical velocity of flutter [12- 15]. In [14, 

15], theoretically (by average method), and in [12, 13] by computational experiment it is 

shown that the effect of viscoelastic properties of structure material on critical flutter 

velocity in both steady and transient processes leads to a significant decrease in value of 

critical velocity of a flutter.In [16, 17] solving the problem of the flutter of viscoelastic strip 

(in the case of the exponential kernel of heredity), the conclusion is drawn that critical 

flutter velocity, in both ideally elastic and viscoelastic cases, does not differ much, and the 

"viscous" properties of material affect the character of strip motion in subcritical 

regiononly. Similar conclusions have been established earlier in [12, 18, 19], and this 

phenomenon is explained by the fact that the exponential kernels do not correctly describe 

the hereditarily deformable properties of structure material. 

This drawback lies in the fact that the relaxation kernel, proportional to the strain rate, 

has a finite value at initial time, however the experiment shows an arbitrarily high strain 

rate, i.e. at t 0, R(t), that contradicts the experiment [20-22], and as a result, when 

solving any dynamic problem (not only the flutter problem), errors accumulate over time 

and the results will be distorted in comparison with reality processes.In fact, in [23] it is 

exactly stated that the vibrations of any viscoelastic system (beams, plates and shells) under 

constant load occur along the creep curve and attenuate over time along this curve. This law 

is fulfilled if any weakly singular kernel of heredity of Abel-type is used as the kernel of 

heredity; the use of an exponential kernel over time due to errors accumulation leads to a 

severe violation of this law of motion of viscoelastic systems. 

In [12, 18, 19] it is shown that if to solve viscoelastic flutter problems with weakly 

singularkernels of heredity, then there immediately appears a significant effect of viscosity 

parameter and singularity on the values of critical velocity and critical time of both linear 

and nonlinear flutter problems. Therefore, the development of a new method for solving 

and demonstrating the reliability of results of the study of dynamic stability problem, both 
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in ideally elastic and in hereditary deformable systems in a gas flow, is a very urgent 

problem. The present paper is devoted to the above problem. The accuracy and 

convergence of the method is tested on known results [24-26] related to the flutter of elastic 

plates and viscoelastic strips [16, 17]. 

2. Formulation of the problem 

2.1 Nonlinear flutter of viscoelastic plates 

Consider a rectangular viscoelastic plate with sides a and b, which is flowed over from one 

side by a supersonic gas flow of velocity V. Aerodynamic pressure is taken into account by 

the piston theory of A.A. Ilyushin [27]. 

For the case of finite deflections of a plate commensurate with its thickness h, strains of 

viscoelastic plate are described by equations: 
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G2) - hinged support on two edges and fixing on the other two: 
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solution of equation (1) is taken in the form: 
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Where wnm=wnm(t)  andФnm=Фnm(t) – are the sought for time functions; nm(x,y) –known 

functions, depending on boundary conditions: 
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Integrating equation(1) by the Bubnov-Galerkin method with relationships (3) - (5), the 

following system of integro-differential equations (IDE) areobtainedwith respect to wnm(t)  

andФnm(t): 
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Eliminating Фnm(t), from this system, the following nonlinear IDEisobtained with 

respect to thesoughtfor function wnm(t): 
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Note that equations (7) are written in general form and are called the basic resolving 

IDE oftwo-dimensional problems of dynamics of viscoelastic systems. Many problems of 

vibrations and stability of viscoelastic plates arereduced to equations of the form (7). 

Equations of motion (7) are integrated by a numerical method based on the use of 

quadrature formulas [18, 19, 23, 27-31]. Results of calculations are given in Tables 1 and 2 

and are presented by the graphs in Figs. 1 - 4. 

For elastic plate flutter velocity is 990m/s(G1), 1535m/s (G2), and 1688 m/s(G3). These 

results practically coincide with the values obtained by analytical method in [23-25] (G1: 

Vcr = 969m/s, A1 = 513; G2: Vcr = 1537m/s; A1 = 814m/s; G3: Vcr = 1542m/s; A1 = 842). For 

viscoelastic plate with regular kernel of heredity, this velocity is 935m/s (G1), 1442 m/s 

(G2) and 1605m/s (G3), respectively. 

Comparison of different cases of plate fixation shows that with an increase in a number 

of fixed sides of the plate,flutter critical velocity increases. 

It can be seen from the obtained results that if the exponential kernel ( = 1) is used, 

flutter velocity decreases by approximately 5%, and when the Koltunov-Rzhanitsyn kernel 

is used this velocity decreases by 45% relative to critical velocity of the flutter of ideally 

elastic plates. Therefore, when using exponential kernels, flutter velocity of viscoelastic 

plate practically coincides with critical flutter velocity for ideally elastic plates. These 

conclusions and results fully agreewith the conclusions and results given in [16, 17], where 

critical flutter velocities are determined by a numerical-analytical method. 

Table 1. Effect of boundary conditions on flutter velocityof plate 

Boundary 

Conditions 
A   tcr Vcr(m/s) 

G1 

0 

0,01 

0,05 

- 

1 

0,5 

- 

0,1 

0,1 

86 

107 

158 

990 

935 

536 

G2 

0 

0,01 

0,05 

- 

1 

0,5 

- 

0,1 

0,1 

98 

123 

185 

1535 

1442 

871 

G3 

0 

0,01 

0,05 

- 

1 

0,5 

- 

0,1 

0,1 

127 

159 

242 

1688 

1605 

915 

According to the results obtained by many researchers [18, 19, 28, 29] using the integral 

stress-strain law with weakly singular kernelof heredity, it is obvious that the viscosity 

parameter leads to a decrease in critical velocity and an increase in critical time (Figs. 1, 2). 

With vanishingly small internal friction, the velocity of the panel flutter is approximately 2 

times less than the one calculated under the assumption that internal friction is completely 

absent [12, 13]. The results obtained by the authors fully agreewith the conclusions and 

results given in [13, 16, 17]. 

Table 2 shows the effect of the shape of plate deflection on critical velocity of the 

flutter. AtN=5, critical velocity is 1540m/s, and for N=6 this velocity is 1595m/s. The 

difference is 3.5%. 
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Table 2. Effect of the shape of plate deflection on critical velocity of the flutter 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Dependence of deflection on time at A=0,0; V=Vcr. 

 

 
Fig. 2. Dependence of deflection on time atA=0,05; =0,5; =0,05; V=Vcr 

The study of viscosity effect is given. Calculations have shown that an account of 

viscous resistance leads to a decrease in critical value of the flutter. Fig.3 shows the effect 

of boundary conditions G1 (curve 1), G2 (curve 2), G3 (curve 3) on vibrations at the 

midpoint of viscoelastic plate (A = 0.05) at 1= 180. With an increase in a number of fixed 

sides of the plate at initial time, the amplitude of vibrations increases, but over time it 

attenuates earlier than in cases with hinged supports. 

 

A    N  Vcr 

0,05 0,25 0,05 3 

2 

1 

835 

3 1130 

4 1410 

5 1540 

6 1595 
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Fig. 3. Dependence of deflection on time atG1(1); G2(2); G3(3); 

A=0,05; =0,25;=0,05; 1=180; =1,2; V=560m/s 

 

 
Fig. 4. Linear theory (1); nonlinear theory (2); 

A=0.05;  =0.25; =0.05; =3; 1=300; V=1339m/s 

Fig. 4 shows the graphs of vibration amplitude as a function of time for studying the 

role of geometric and aerodynamic nonlinearity. In a linear statement, the amplitude of 

vibrations increases rapidly (curve 1), flow velocity is greater than critical one, and with 

account of nonlinearity, the amplitude of vibrations decreases (curve 2). 

2.2 The problem of vibrations and stability of viscoelastic strip 

Consider the problem of vibrations and stability of elastic and viscoelastic strip in a gas 

flow [16, 17] and present a comparative analysis of the results of solution with the ones 

obtained by the proposed method. 

In a rectangular coordinate system, the strip occupies region 0yl, x0. On one side it 

is flown overby a gas flow with velocity vector V=Vn0,  n0 = {cos, sin}.  

Strip vibrations are described by equation [16, 17] 
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M given in [16, 17], and retaining the 

previous notations, equation (8) is written in the form: 
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Solution of equation (9) is chosen in the form:  
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According to numerical method, we regularize the IDE system (11) with singular 

kernels. Substituting the variables 


1

zt  ,  
tz 0   (0<α<1)                                (13) 

the integral with the Koltunov-Rzhanitsyn kernel with a singularity of the following form 

A   dwtt

t

)())(exp()(
0

1 
                           (14) 

has the form 

dzztwz
А t

)()exp(
11

0






 .                                    (15) 

Note that after substitution of variables, the integrand with respect to z becomes regular. 

Then, assuming thatt=ti, ti=it, i=1,2,…(t=const-is the interpolation step) and replacing 

the integrals by some quadrature formulas (in particular, of trapezoids), we get 







i

k
kikk

wtB
A

0

)exp( 


                                    (17)          

 

where the coefficients are ;
2

))1((
;

2
0

 





iit
B

t
B

i
 

    .1,1,
2

))1()1((
   


 ik

kkt
B

k



                       (18)   

On the basis of this method, an algorithm for numerical solution of system (11) is 

described. Integrating system (11) twice with respect to t, it can be written in integral form; 

with rational transformation we eliminate the singular features of integral operator


1R . 
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Then, assuming thatt=ti, ti=i∙∆t,i=1,2,… (∆t =const) and replacing the integrals with 

quadrature formulas of trapezoids for the calculation of  ik k iw w t , the recurrence 

formulas for the Koltunov-Rzhanitsyn kernel are obtained: 












 





p

p

p
twaaww

aaA
w

01200

12

)/(
)/(1

1
 

 
1 31

2 1 α
01

0

1

( exp( ) )

jp

j
j j p j

j j s s j s

s

a Mw

A a w t t
a w B t β w



 




 



   
  

            




(19) 

With the proposed approach, in the algorithm for numerical solution of the problemthe 

factor
jp

tt  at j= pin formula (19), takes zero value, i.e. the last summand is zero. 

Therefore, the summation is done from zero top-1( 1,0  pj ).   

Thus, according to numerical method with respect to the unknowns, a system of 

algebraic equations is obtained. The Gauss method is used to solve the system. Based on 

the developed algorithm, a package of applied computer programs is created. Results of 

calculations are given in Tables 3.  

Table 3. Dependence of critical velocity of strip flutter on the parameters of the kernel of heredity 

 

 

 

 



crМ  

(results given in[16, 17]) 



crМ  

0 - 0.096029 0.096027 

0.1 1 0.096065 0.096025 

0.1 0.1 - 0.093745 

0.1 0.03 - 0.0919745 

0.3 0.005 - 0.079220 

Table 3 shows the results of specific calculations for the parameters values  [16, 17]: 

370 108,105   
E

p
kg/m

3
 , =1.4, =0.3, V=330 m/s, 2103 

h

l  . 

The third column shows the results [16, 17] when critical flutter velocities are 

determined by a numerical-analytical method. 

As seen from theresults obtained, for ideally elastic and viscoelastic strips (in the case 

of exponential kernel of heredity) the critical velocities of the flutter exactly coincide with 

the results given in [16, 17]. For viscoelastic strip with a weakly singular heredity kernel, 

this velocity decreases. 

2.3 Results reliability of solving the dynamic stability problem of hereditary 
deformable systems 

Conclusions on results reliability of solving the dynamic stabilityproblem of hereditary 

deformable systems in a gas flow, obtained by eliminating weakly singular features of 

integral and integro-differential equations. 
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Thus, the computational experiments carried out according to the algorithm of the 

proposed method for solving the flutter problem of viscoelastic systems completely refute 

some intuitive conclusions and natural dissatisfaction with the effect of viscoelastic 

properties on critical velocity and critical flutter time.Therefore, when solving dynamic 

problems of mechanics of a deformable rigid body, it is necessary to use the integral stress - 

strain law with weakly singular heredity kernels of Abel-type. Numerical experiment of the 

dynamics of corresponding structures has shown the presence of a significant effect of this 

feature on the nature of their vibrations, for example, an account of weakly singular feature 

of heredity kernel leads to a significant decrease in the value of critical velocity and an 

increase in critical time (Figs. 5, 6).This fundamentally new mechanical effect may be of 

interest to the specialists in the field of designing such structures [33]. 

 

 

Fig. 5. Dependence of deflection on time  

at =0,0; 


crМ =0.096027. 

 

Fig. 6. Dependence of deflection on time  

at =0,03; =0,005; 


crМ =0.079220. 

3. Conclusions 

It should be noted that the algorithm of the proposed method makes it possible to 

investigate in detail the effect of rheological parameters on the character of vibrational 

stability of hereditary deformed systems, in particular, in the study of flutter problem of 

ideally elastic systems. 

As seen from Tables 1 and 3 the reliability of study results is proved by testing with 

known results related to the flutter of elastic plates [24, 26] and viscoelastic strip [16, 17]. 

In both cases, a satisfactory agreement of the solutions obtained is shown;that shows the 

reliability and high accuracy of the proposed calculation procedure. 
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