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Abstract. A screened enclosing structure of the outer wall of the building 

without the use of thermal insulation materials is proposed. To ensure the 

required thermal resistance of the outer fence, screens (cement-containing 

slabs) and closed air gaps between them are used. Using the ANSYS 

software package, the heat transfer processes were modeled in a shielded 

building envelope, consisting of the main (carrier) part and screens with air 

gaps closed between them. The features of the heat transfer process in the 

thickness of the outer enclosure are revealed. 

1. Introduction 

Problems of the rational use of fuel and energy resources, new technologies for the 

construction of pre-fabricated structures make the actual task of insulating the facades of 

buildings, both reconstructed and newly built. Traditional multi-layer enclosing structures 

consist of supporting (structural) and insulating layers. Various types of thermal insulation 

materials are used, which, as a rule, should be located on the outside of the fence. Mineral 

wool, polystyrene foam, polyurethane foam, etc. are currently used as thermal insulation 

layers. The following facade structures are widely used: sandwich panels, ventilated 

facades, etc. The choice of thermal insulation material is influenced by their characteristics: 

density, thermal conductivity, heat absorption of the surface. Thermal insulation materials 

are a weak link in external enclosing structures, since they have several disadvantages: 

combustibility, hygroscopicity, shrinkage, poor noise insulation, low strength, etc. It is 

known that the most effective heat insulator is air in a stationary or inactive state [1], for 

example, in closed air spaces. Back in 1905, V.M Chaplin proposed to use air gaps as a 

heat-insulating material in enclosing structures [2]. As a result of the research he showed 

that: 

 an alternative to a single layer of insulation can serve several air gaps; 

 optimal air gap width is 25-50 mm; 

 air gaps should not be made high to reduce the rate of air circulation in them, if 

possible, cross them in height by horizontal partitions; 
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 air spaces should not be connected with each other and with the surrounding 

space, as this impairs their thermal insulation properties. 

Despite the fact that these studies were performed more than 100 years ago, previously 

shielded walling structures were not used in construction without the use of thermal 

insulation materials. 

The aim of the work is computer modelling in the ANSYS software package of enclosing 

structures that do not use thermal insulation materials. Previously, a similar approach was 

successfully used for the thermal engineering calculation of a multi-layer enclosing 

structure of the “sandwich panel” type [3]. 

2. Formulation of the problem 

In work models of the panels containing one and 15 air gaps are considered. The fig. 1 

shows a cross section of a walling structure with one air gap (model 1). Numbers 1-6 

marked the number of layers, the characteristics of which are shown in table 1. 

 

 

Fig. 1. Scheme of the model number 1. Fencing design with one air gap 

Results of natural tests are resulted in Table 1. 

Table 1. Characteristics of the enclosing structure by layers 

Layer 

number 
Material 

Heat 

conductivity 

coefficient λ, 

W/(mK) 

Layer 

Thickness 

δ, mm 

Density 

ρ, kg / m3 

Specific 

heat 

capacity cp, 

kJ/(kg K) 

1 Plaster 0.7 10 1600 0.84 

2, 4, 6 Reinforced concrete 1.92 30 2500 0.84 

3 Concrete mortar 0.76 5 1800 0.84 

5 Styrofoam 0.052 200 10 1.34 

7 Air gap 0,14÷0,28 16 1.225 1.005 

8 
Shield (Cement 

Plate) 
0.47 8 1800 0.84 

If we assume that the temperature distribution is the same in all cross sections, the problem 

can be considered as two-dimensional. If, in addition, to neglect the dependence of 
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temperature on the vertical coordinate, we obtain a one-dimensional approximation of the 

problem. 

The fig. 2 shows a 3D model of a building envelope with 15 air gaps (model No. 2). Layers 

1-8 are the same as in model No. 1. In the 3D formulation, the problem was solved taking 

into account the movement of air. 

 

 

Fig.2. Scheme of model No. 2. 3D model of a building envelope with 15 air gaps 

3. Mathematical models and methods of solution 

The simulation of thermal processes in a multi-layer enclosing structure was performed in 

one-, two- and three-dimensional productions using our own program in the MathCAD 

package and various ANSYS PC modules. 

3.1. Approach 1 

To describe the processes of heat transfer in a multi-layer building envelope in a one-

dimensional formulation, the 1D heat conduction equation is used: 
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where F(x,t) – function describing heat sources or sinks. Equation (1) can be written in the 

form: 
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where         xxCxxK p ρλ   – material thermal diffusivity, K>0. 

The values of coefficients of thermal diffusivity of materials of different layers of the 

structure are given in table 2. 

Table 2. Thermal diffusivity values. 

Layer number Material Thermal diffusivity K, m2/c 

1 Plaster 5.6·10
-7 

2, 4, 6 Reinforced concrete 8.1·10
-7
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3 Concrete mortar 5.6·10
-7

 

5 Styrofoam 1.8·10
-5

 

7 Air gap 6.7·10
-7

 

8 Shield (Cement Plate) 5.6·10
-7 

Equation (1) is solved by the setting method in the domain D=[0; Tk]×[0; L], where L – 

panel thickness, Tk – final moment of time. At the moment t=0, the initial temperature 

distribution T=0°C is set. At x=0 (inner surface) and x=L (outer surface), boundary 

conditions of the 3rd kind (convective heat exchange) are set: 

             



 TT

n

T
w

w

αλ        (2) 

where Tw – wall temperature, °C; T – ambient temperature, °C. 

The calculations used the values of heat transfer coefficients for the inner surface of the 

building envelope αin=8.7 W/(m
2
 K), the outer surface αout = 23 W/(m

2
K). Set temperatures 

T,in=21 °C for the inner surface (x = 0) and T,out=-37 °C for the outer surface (x=L). 

We construct in the region D a finite difference grid with steps τ and h. To solve the 1D 

problem, we use an implicit finite-difference scheme with a special approximation of heat 

fluxes, which makes it possible to calculate an equation with a discontinuous thermal 

diffusivity [4]. 
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For approximation of the boundary conditions (2) uses the relations: 
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Rewrite (3) as a three-point equation: 
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The sweep method [5] is used to determine the solution on the upper time layer n+1. 

3.2. Approach 2 

The heat transfer processes for models 1 and 2 of the two and three-dimensional 

approximation were calculated in the StaticThermal and Fluent modules ANSYS. 

General view of the 2D/3D heat equation: 
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where N=2 and 3  for two and three-dimensional problems, respectively. 

In a two-dimensional formulation, a panel with a height of 1 m was considered. On the side 

surfaces x=0 and x=L, the conditions for convective heat transfer are set, similar to (2). At 

the upper and lower boundaries AD, BC, the heat insulation conditions are set (no heat 

flow). 

When solving a three-dimensional problem, a panel with a height of 1 m and a width of 1 m 

was considered. The thermal insulation conditions are set on all lateral surfaces of the 

Symmetry type: 

               0




wn

T
.       (6) 

On the external and internal surfaces - the conditions of convective heat transfer (2). 

This approach allows to simulate stationary thermal processes in solids and in air spaces. 

However, the effects of convective heat transfer due to the movement of air in air spaces, 

which can make a significant contribution to the thermal resistance of the structure, are not 

taken into account in this approach. Therefore, in the next step, the task was modeled in the 

ANSYS Fluent module. 

3.3. Approach 3 

The mathematical model, in addition to the heat equation, includes the Navier – Stokes 

equations [6], which describe the movement of air. Therefore, the model allows to take into 

account the convective movement of air in the layers. Since the flow velocities are small, 

the calculation was performed on the assumption of laminar flow. Accounting for gravity 

and the dependence of air density on temperature is necessary for the organization of 

natural convection in confined spaces. 

For a full-fledged study, the calculation was also carried out taking into account radiant 

heat transfer, for which the source term Q, which is determined by the Stefan-Boltzmann 

law, was added to the right side of the equation: 

 44
л σε wТТqQ   ,     (7) 

where  is the emissivity of the surface (degree of blackness);  is the constant of Stephen - 

Boltzmann. 

=0.4 - which corresponds to the accepted material (aluminum foil).In further calculations, 

the value of the degree of blackness of the screens is taken to be 

The air has a low absorbing and dispersing ability. In this case, the thermal radiation of the 

medium itself can be neglected, and the radiant heat transfer is calculated between the 

surfaces bounding this medium, so the S2S model (SurfacetoSurface) was chosen to 

calculate the radiant heat transfer [7]. 

To assess the effectiveness of walling, use the value of thermal resistance, which 

characterizes the property of matter to resist temperature changes. 

нв

0
α

1

α

1
  iRR ,      (8) 

Here iiiR λδ  is the thermal resistance of the i-th layer of the structure; δ – thickness of 

the building envelope, m. 
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4. Results and discussions 

The solution of the problem for model No. 1 was obtained using approaches 1 and 2. At the 

initial moment, the wall had a temperature T=0C. Calculation "on the establishment of" 

made by the methods described above. The number of grid elements in approach 2 was 

11,500 elements. In approach 1, the difference grid step h=0.210
-3

 was used. The 

calculation results are presented in Fig. 3. 

 

Fig. 3. Temperature distribution over the thickness of the fence (model number:  

1 - approach 1; 2 - approach 2 

The temperature distribution (approach 2) is plotted over the section y=1 m. The graph 

shows that in layers 1–4 and 6 the temperature changes slightly, and in layer 5 (air) there is 

a sharp drop in temperature, which can be explained by the low thermal conductivity of air. 

A comparative analysis of temperature distribution graphs showed that the results of 

calculations using approaches 1 and 2 coincide, with the exception of narrow zones at the 

air-solid interface. This indicates that in this formulation the temperature field is one-

dimensional. 

The Figure 4 shows the temperature distribution over the thickness of the panel of model 

No. 2. The number of grid elements is 54,500. Analysis of the data obtained showed that 

the temperature decreases uniformly throughout the thickness of the enclosing structure. 

This indicates that the design is heat resistant, i.e. the body tends to maintain the original 

temperature. The thermal resistance of model No. 2 is R=10.71 m
2
K/W. The temperature 

drop inside a separate layer occurs according to a linear law and does not depend on y. 

Areas of low temperature change correspond to screens, and areas of temperature drop 

correspond to air gaps. The temperature drop in the air gap is significant, due to the low 

thermal conductivity of air and its width. 
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Fig. 4. Temperature distribution over layers  of the building envelope of model No. 2 

Next, we simulated the temperature field of model No. 3 in ANSYS Fluent. The number of 

grid elements is 1,497,600. The size of the grid element in the air gap is 0.5 mm. 

As a result of the calculations, it was found that the natural convective movement of air is 

organized in air spaces. The air flow rises up along the warmer wall, and down along the 

colder one. 

The temperature distribution in the upper section of the wall 1 and in the lower section 2 is 

shown in fig. 5, where it can be seen that the temperature distribution depends on the 

position of the section. 

 

 
Fig. 5. Temperature distribution in sections 1 and 2 located in the upper and lower parts of the wall 

structure 

 
Analysis of the temperature distribution showed that in the upper part of the structure the 

temperature is higher than in the lower one, which can be explained by the movement of air 

in the air spaces. 

The next task was to select the optimal thickness of the air spaces. To solve the problem, 

the geometry of model No. 3 was used, in which the thickness of the air gap is a parameter. 

Were calculated models of enclosing structures with thicknesses of the air gap 8, 12, 16, 20, 

24, 32 mm. In addition, the dimensions (height and width) of the panel were changed: 

0.5×0.5 m, 1×1 m, 2×2 m, and 3×3 m. The Figure 6 presents the calculated values of 

thermal resistance for different geometrical parameters. 
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Fig. 6. Thermal resistances of the enclosing structure (model No. 2) depending on the thickness of the 

air gap and the size of the structure 

The graph shows that with an increase in the thickness of the air gap from 8 to 16 mm, the 

thermal resistance increases sharply and then stabilizes. This can be explained by a change 

in the structure of the air flow in the thickness of the air spaces. Due to the movement of air 

in the air gaps vortices are formed. As the thickness of the air layers increases, the partial 

vortices merge into one vortex, circulating at high speed between the heated and cooled 

surfaces, which leads to an increase in heat transfer. Thus, the optimum thickness of the air 

gap varies from 16 to 20 mm. The thermal resistance of the enclosing structure is R=9.32 

m
2
K/W, with an interlayer thickness of 16 mm and a construction size of 3x3 m. For a full 

study of heat transfer, a calculation was made taking into account radiant heat transfer. The 

fig. 7 shows the variation of the radiant heat flux ql in thickness of the enclosing structure 

with air gaps of 16 mm. 

 

Fig. 7. Radiant heat flux through the thickness of the fence 

Analysis of the data obtained shows that the intensity of the radiant heat flux decreases 

along the thickness of the structure, which is caused by the temperature variation over the 

layers of the structure. The total thermal resistance of the external enclosure (taking into 

account radiant heat exchange) calculated in ANSYS is R=5.75 m
2
K/W. It should be noted 

that according to regulatory documents, the value of thermal resistance can be calculated 
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only for one air gap, since there is no information on the temperature distribution inside the 

structure. When simulating with ANSYS, the data were obtained more accurately, since the 

temperature is directly calculated in each layer. 

5. Conclusions 

1. Traditional heat insulation materials in refractory structures can be replaced with 

shielded exterior refractories that use air gaps and shields. 

2. The lack of thermal insulation material in shielded enclosing structures determines their 

durability and fire safety. 

3. The optimum thickness of the air gap, at which the maximum thermal resistance is 

achieved, is 16 ÷ 20 mm. 

4. In a design with a small width of the air gap, the air is fixed or moves at a minimum 

speed, and therefore is a good heat insulator. With increasing width of the air gap - heat 

transfer increases due to the convective component. 

5. Reducing the degree of blackness of the surface of the screens to R=9 m
2
·K/W will allow 

to reach maximum values thermal resistance, i.e. at = 0.05. 
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