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Abstract. The purpose of the article is to develop the required and 

sufficient conditions under which numerical methods can be used for 

engineering calculations and for scientific research of hydrodynamic 

processes in solving practical problems related to surveying of pollutants 

diffusion in water flows. The conducted studies consisted in the finding out 

conditions under which mathematical modelling using hydrodynamic 

equations allows to solve engineering problems of channel hydrodynamics 

and, in particular, to numerically simulate the transport of suspended 

particles in channels. A number of additional nature of numerical models 

were studied in addition to approximation and stability, such as averaging 

over probability and over time averaging. It was noted that only stationary 

processes could be described by equations if they are obtained from the 

Reynolds equations, i.e. when using the Reynolds equations, an important 

class of problems with a pulsating flow under constant boundary 

conditions is excluded from consideration. And, if the equations are 

obtained directly from the conservation laws, then all the desired variables 

have the meaning of actual quantities averaged over the scale. That is even 

in the case of statistically stationary flows, using such equations, it is 

possible to solve nonstationary problems on large time scales.  

1 Introduction 

Turbulence is an inherent property of the flow of liquid media. Turbulent flow regimes are 

inherent in currents of natural and artificial channels. Therefore, in the mathematical 

modelling of flows, it is necessary to take into account dissipative processes related to 

viscosity, thermal conductivity, diffusion of components and the corresponding processes 

of turbulent heat – mass transfer. Otherwise, inadequate characteristics of hydrodynamic 

flows can be obtained.  

More than a century of research experience shows that the problem of turbulence is 

extremely complex and, so far, it has not been possible to obtain any simple analytical 

solutions for describing the processes occurring in turbulent flows. Turbulence has a 
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stochastic nature and is a fundamentally three-dimensional unsteady nature and includes a 

wide and continuous spectrum of spatial and temporal scales [1 - 3]. 

In some cases, turbulence is a decisive factor determining the speed and nature of the 

processes, such as mixing and transfer of suspensions. In such cases, it is necessary to take 

particular care over the introduction of simplifications into the systems of equations since 

this can lead to the impossibility of applying for modelling real flows and mass transfer and 

which could significantly change or even do not allow to obtain a picture of flows. 

2 Hydrodynamic equations  

The solution of the general equations of hydrodynamics is a very complex problem, which 

is traditionally solved by introducing certain hypotheses. As practice shows [5 - 12], for 

reservoirs, the horizontal dimensions of which are much greater than the depth, this can be 

done by introducing a large scale to consider the phenomenon. In this case, depending on 

the degree of desensitization, three-dimensional equations of baroclinic liquid, two-

dimensional Saint-Venant equations, one-dimensional equations, and zero-dimensional 

(balance) equations could be obtained. 

The general equations of hydrodynamics can be written in the following way [13]: 
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here: 

ui - projection of the current velocity vector onto the axis xi, 

p - hydrodynamic pressure, 

i - component of shear stress tensor, 

 - density, 

gi - component of the gravitational acceleration vector, 

qSr - internal sources of substance for Newtonian fluid. 
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where: 

 - kinematic coefficient of viscosity, 

Sr - some substance that determines density (temperature, salinity). 

In [4], it was shown that with the introduction of scale: 

M L TL n 2        (3) 

here Ln - linear scale in plan (provided that Lnh, where h - flow depth); T L Un  , 

here U – representative velocity. 

and considering the case when 
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as well as using the turbulent viscosity hypothesis for moments  
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here T – is be find out with either using the von Kármán turbulence model or “k-” model 

[5 - 11], the assumption of small changes in all characteristics along the horizontal 

coordinate as compared with changes along the vertical one, results in hydrostatic pressure 

at a given scale and, thus, the following system of equations can be obtained: 
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Here D – is vertical diffusion coefficient (similar to), it is usually assumed that  

D T, Sr - average substance concentration in scale (3). 

The same equations can be obtained from the Reynolds equations with the additional 

assumption of the possibility of neglecting turbulent interactions between liquid jets in the 

plane. Thus, two different approaches lead to the same form of equations. However, in 

terms of expected results, these approaches are not equivalent. Indeed, all dependent 

variables ui, qi and h in (6) have different meanings depending on whether these equations 

are derived from the Reynolds equations or directly from the conservation laws. In the first 

case, these values averaged first by probability and then on a large scale, in the second, 

these are actual values, averaged by the same scale. 

When considering a statistically stationary flow in the case of an ergodic process, averaging 

over probability is equivalent to averaging over infinite time. Therefore, if we assume that 

equations (6) are obtained from the Reynolds equations, then in the considering case they 

can only be stationary. At the same time, if equations (6) are obtained directly from the 

conservation laws, then all dependent variables ui, qi and h in (6) are the current values 

averaged by scale. That is, even in the case of statistically stationary flows, using equations 

(6), it is possible to solve non-stationary problems in time scales over  L Un C B. , where 

UСВ - disturbance drift rate. 

Thus, when using the Reynolds equations, an important class of problems with pulsating 

flow under constant boundary conditions is excluded from consideration. 

All of the above, strictly speaking, is true for free from boundaries in terms of flow. If the 

flow is considered near a rough vertical wall, it is impossible to consider the hydrodynamic 

quantities as actual. If we consider them as averaged over probability, then in the case of 

pull apart flows we will come, in the same way as before, to the same dead-end result 

(concerning shear stress between jets). Therefore, it is proposed to consider the 

hydrodynamic quantities in (6) as averaged over the scale M, much bigger than the 

roughness scale, but much smaller (3). Then ij will have a meaning similar to the Reynolds 

stress, where the averaging is carried out not by probability but by scale M. These stresses 

are determined by the roughness peaks. Stresses at the bottom are also determined by the 

roughness of the bottom. 

The modified Prandtl model [12] or a two-parameter model “k-” [5] is usually used to 

close the system of equations  (6). 
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3 One-dimensional equations 

Engineering practice of calculations [13-17] shows that for a certain class of flows there is 

another scale, within which phenomena can be neglected. Let us consider this class. Let 

there be a reservoir whose geometry satisfies the following ratio LB, here L – the 
length of the water body along the direction of prevailing flow, B - representative 

transverse size of the water body. In the future, such a water body will be called a 

waterway. Direction of the predominant flow let us take as the axis of the waterway and 

consider this axis straight if rB, here r - the radius of curvature of the axis of the 

waterway. 

According to [15], one-dimensional equations for describing flows in such waterways can 

be written in the following form: 
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Here: 

y - transverse coordinate; - flow cross-sectional area; Q - water flow through the 

entire flow cross section; U  Q - cross sectional flow average velocity; friction slope: 
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R ( - wetted perimeter); i - average bottom slope; J - specific impulse supplied to 

the area along with lateral flow rate;  q - lateral flow rate; F- force associated with 

deviation from prismatic channel of the waterway: 
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yb - transverse coordinate of the bottom surface; -the angle between the tangent to the 

bottom line in the plane x const and the axis OY in plane YZ, normal to the plane of the 

averaged bottom surface. 

These equations are widely used in practice. [13 - 20].  

4 Consideration of deformations 

Equations (7) are written for the conditions of bottoms, banks, could not be deformed, 

banks, and slopes. For the case of a wide rectangular channel with a smooth changes in the 

width of the cross sections problems can be solved toking into account deformations. In this 

case, the equations are as follows: 
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Having a turbidity distribution along the length of the channel (for example, from 
experimental data) can find numerical values of “К” could be found from: 
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Experimental studies [21] showed that, under certain conditions of formation of the original 

moving bottom, the first member of the equation could be neglected. Moreover, under 

conditions of erosion with water without sediments, it is in order of magnitude smaller than 

other members. Then with a constant flow rate: 

 K

q
dS

dx

S SH




 (12) 

Data from [4, 22] were processed to identify the degree of influence of suspended solids in 

streams on the numerical value of "K". According to [4] the settling velocity (hydraulic 

size) does not have significant effect on the value of

*U

K
. On the contrary, the presence of 

suspended solids reduce its values the stronger the more of suspended solids are being 

transferred by the stream.  

In [4], it was shown that for a zone of flow descent from a berm, the value can be 

determined in the same way. In the conditions of turbidity-free water flow, the maximum 

value obtained as the result of experimental and field studies data processing is 

26,1

max*










U

K , and in the conditions of the formed equilibrium flow is 
81,0

max*
















U

K . 

Thus, by dividing flows into two zones: zone of local erosion and zone of common 

deformations, using the results of data processing, it is possible to calculate parameters of 

flows in easily deformed sandy channels. 

5 Conclusions 

Until today, there is no simple analytical solutions to describe processes in turbulent flows. 

This is due to the stochastic nature of turbulence flows, which is a process that has a three-

dimensional nonstationary nature and includes a wide and continuous spectrum of spatial 

and temporal scales. 

Turbulence in solving engineering problems of channel hydrodynamics is the decisive 

factor determining the speed and nature of the processes such as mixing and transfer of 

suspensions. 
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Long-term studies allowed to formulate certain hypotheses regarding the scope of 

consideration of phenomena, the application of which permitted to obtain three-dimensional 

equations of baroclinic fluid, two-dimensional Saint-Venant equations, one-dimensional 

equations and zero-dimensional equations, each of which has its own specific field of 

application.. 

Averaging over probability is equivalent to averaging over infinite time while considering 

of statistically stationary flows in the case of an ergodic process. Therefore, if the 

hydrodynamic equations are obtained from the Reynolds equations then stationary 

processes only can be described by these equations, The use of the Reynolds equations 

leads to the exclusion from consideration of an important class of problems, i.e. problems 

of pulsating flows under constant boundary conditions. If the equations are obtained 

directly from the conservation laws, then all the required variables have the meaning of 

actual quantities, averaged over the consideration scale. That is, even in the case of 

statistically stationary flows, using such equations, it is possible to solve nonstationary 
problems on large time scales. 

The results of processing the turbidity distribution along the length of the channel 

conducted to identify the degree of its influence on the deformation processes allows to 

calculate parameters of flows in easily deformed sandy channels. 
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