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Abstract. Based on the laws of classical mechanics, in particular, the law 

of conservation of momentum, the paper describes the developed 

mathematical model of signal propagation during vibration diagnostics. At 

the beginning, the problem of signal propagation was investigated, which 

was reduced to solving the problem of wave propagation. According to the 

analysis of experimental results investigated, that the attenuated nature of 

the signals must be taken into account. For this purpose, a mathematical 

model has been developed, which allows to solve the problem of the 

propagation of damped signals. Comparative analysis allows to conclude 

that the constructed model is adequate.  

1 Introduction 

Currently in the Republic of Uzbekistan about 70% of the land is irrigated using centrifugal 

pumps, the smooth operation of these pumps is necessary for the successful development of 

agriculture. In the Action Strategy for the further development of the Republic of  

Uzbekistan for 2017-2021, special attention is paid to the development of land reclamation 

and irrigation facilities to increase the level of the national economy”. The implementation 

of this task, aimed at improving the accuracy of diagnosing the state of pumping units, 

becomes important.  

2 Methods 

As a rule, when vibrodiagnostics using an accelerometer installed at certain points of the 

machinery, a signal is recorded in the form of vibration acceleration. This signal, either in 

the device, which is called the vibrator, or integrated in the computer, is converted into 

vibration velocity or vibration displacement (Fig. 1). All these three types of signals in 

vibration diagnostics are considered periodic polyharmonic processes. 

The leading direction in vibration diagnostics is the analysis of the spectrum of the 

vibration signal. 

When constructing a mathematical model, we will proceed from the laws of theoretical 

mechanics, in particular, from the law of conservation of momentum, which leads to the 

equation of signal propagation in the form of vibration accelerations in integral form [1]. In 

order to pass from an integral equation to a differential one, suppose that the desired 

function has second derivatives. 

The task of signal propagation is reduced to solving a differential equation of the form: 
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satisfying homogeneous boundary conditions at:
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And initial conditions:
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To solve  the problem using the method of separation of variables. According to this 

method, equation (1) is represented as:
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where: X (x) is a function of variable x only;

             Y (t) - function of variable t only.

  As a result of substituting equation (4) into equation (1), we obtain the following 

expression:
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where: λ is a constant, which, for the convenience of subsequent calculations, is taken with 

a minus sign, without assuming anything about its sign.

 From the expression (5) we obtain the differential equations for determining. 
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Moreover, the boundary and initial conditions are taken as zero. 

It is determined [2] that when the value of λ1 is equal to 
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There are nontrivial solutions of the problem (1) 
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Defined up to an arbitrary factor, which we set equal to one. The same values of λn 

correspond to the solution of equation (7) in the form. 
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where: flourier coefficient for the k-th harmonic 
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- average value. 

Equations (10) can also be represented as 

,
2

cos)(
1









 





k

k

ko
T

kt
AAtY 


;

2

o
o

a
A 

                            (11) 

where: 
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 - initial phase of the k-th harmonic of the spectrum.  

When k = 1 we have
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Further, by virtue of linearity and homogeneity, we represent equation (1) as the sum of 

particular solutions: 
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This solution satisfies this equation and the boundary conditions. 

However, due to the decaying nature of signal propagation, in general, the signal 

propagation equation can be represented as
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In particular, from equation (12) one can get equation (1), however, due to the fading 

nature of signal propagation, the third term of equation (12) cannot be neglected. 

In this case, the problem is reduced to solving an ordinary differential equation: 
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To find a unique solution of the differential equation (14) in partial derivatives, it is 

necessary to determine the initial and boundary conditions. 

Initial and boundary conditions are called the conditions specified at the initial time t. 

The boundary conditions are specified for different values of spatial variables. 

Equation (14) is solved numerically under initial conditions. 
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To test the adequacy, we compare the results of solving equation (14) with the data of 

experimental studies and present them in the form of an accelerogram (Fig. 1.) 

 

 

Fig. 1. Accelogram amplitude spectrum of vibration on the camera impeller pumps first Karshi 

Machine channel. 

Using the “Spline interpolation” method, we replace the accelelogram with broken 

curves (Fig. 2). 
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Fig. 2. Experimental result.
 

Further, according to the well-known method [2], we average the values and as a result 

we obtain the averaged curve (Fig. 3). 
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Fig. 3. Approximation of experimental results. 

Based on the analysis and processing of experimental data with a given degree of 

accuracy, it is possible to assert that equation (14) is valid. 

In case of replacement by a differential equation of the first order. 
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The pattern of signal change is shown in Fig. 4. 
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Fig. 4. The pattern of changing signal. 

Comparing the experimental and theoretical curves, we can conclude about the 

adequacy of the mathematical model. 

Next, go to the complex values. 

For a periodic function of a Fourier series in a complex form, has the form: 

 

,
2

)( 















 





t
T

ki
xpecty

k

k



    

where  
,

2
)(

T

dtt
T

ki
xpety

с

T

O
л
























                                      

(15) 

5

E3S Web of Conferences 97, 05045 (2019)  https://doi.org/10.1051/e3sconf/20199705045
FORM-2019



;
2

)( kk
k

iba
c




                      

;
2

)( kk
k

iba
c


  

(coefficients сk complex conjugate). Relationship (15) is based on the Euler formula 
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An important characteristic of the vibration signal is the root mean square value (RMS). 

Given the parseval equality, equations (15) take the following form: 
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where: L is the number of lines of the spectrum. 

Let the function y (t) be given at times ti=у(ti), where: ti=i ·∆t; ∆t – sample rate, 

;
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i=1, … N, N – number of ordinates in function; Т- implementation length of the 

studied function. Further (ti) we will denote as y (i) or ui, i.e. i– e function value 

The calculation of the spectrum module is performed by the formula: 
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where is the frequency of the k-th harmonic
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Function at sampling points 
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In complex form, this value is 
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Considering that  сk=сk 
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In the future, the amplitude of the k-th harmonic, calculated by the formula (6), we will 

denote Y(k). 

If the signal is not periodic, then its spectrum is continuous and is determined by the 

direct Fourier transform: 
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where: ck is the complex Fourier coefficients (the complex coefficient is equal to the area of 

the rectangle with base f1 and height s (k / T)). 

Based on the Kotelnikov theorem, if the signal has a frequency-limited spectrum (f≤Fb), 

then to restore the signal it is enough to know the spectrum at discrete points fk. 

Given the discreteness of the representation of the original signal y (i) the desire to 

represent the spectral density in discrete form, use the discrete Fourier transform (DFT) [3] 

(with the assumption that the values of yi)  
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If the cutoff frequency
 

)2/( tNFc   is significant, then the number of ordinates N at a 

constant discretization step must also be large, which increases the amount of DFT 

calculations (the number of calculations is proportional to N2). 

In this regard, in practice the methods of fast Fourier transform (FFT) are widely used 

(4) 

For FFT 
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We introduce such notation: 

fg – sampling frequency (Hz), sample rate fg/1t (sec), sale length N/fg;=T  sec 

f1 – first harmonic frequency (Hz), ;
N

f

T

1
=f

g

1    1k fk;=f  - frequency of the k-th 

harmonic (the realization length T determines the accuracy of the spectrum 

reproduction); 
 

L – the number of lines in the spectrum 
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where: Fb – high frequency. Based on the Kotelnikov theorem, fg>2Fb, often take fg=2,56 

Fb(256=2
8
); 

FH- lower frequency (Hz) if T>1/FH that f1<FH; 

fp - rotor speed (Hz); 

 

3 Discussion 

Consider a practical case of importance: 

fg=2,56·Fb Hz, N=2
p
. Тhen K=1002

p-8
: at p=10 (N=1024) L=400, at p=11 (N=2048) 

L=800, at p=12 (N=4096) L=1600, at p=13 (N=8192) L=3200. As we see, if fg>2·Fb, then 

the number of lines of the spectrum L<N/2. 

If additionally Fb=5000 Hz (fg =12800 Hz), that T=2
p-7

/100; f1=100/2
p-7

; fk=k·100/2
p-7

; 

relative harmonic number in rotor frequency  mk=fk/fp=k/2
p-8 

(fp=50Hz). At p=11 m1=1/8, 

m2=1/4, m3=3/8, m4=1/2, m5=5/8, m6=3/4, m7=7/8, m8=1, m9=9/8, . . . , m800=100; mk=1 at 

fk=fp. If a fp=50 Hz, that k=2
p-8

, at p=11 k=8. 

Comment: number of lines in increments fpLp/2p
-8

=100 and does not depend on p. For 

sampling rate 12,8 кHz, the frequency step for the spectrum is: at N=1024 f1=12,5 Hz, at 

N=2048 f1=6,25, at N=4096 f1=3,125 Hz, at N=8192f1=1,5625 Hz. 

RMS value is determined as follows [4]: 
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Actually, formula (28) is valid in the case, if the constant component а0/2 equals zero. In 

vibration diagnostics vibration, removed from machinery, Filtered at low and high 

frequencies and set in the range (FH, Fb) FH˃0, so the formula (28) is true for the time 

function (wave) and coincides in meaning with the formula (19), fair to the spectrum. 

In the case when the vibration signal breaks up in time into parts, either when 

integrating or defining an RMS envelope, you must first remove the constant component 

 

  ;)/(/ 2

1
22  NyNyRMS ii

                                    (29) 

The number of terms in the formula (29) is equal to L. 

In addition to the VHC, in vibration diagnostics is used: 

а) peak value - the largest absolute value of the maximum deviations of the oscillating 

quantity. There is a positive peak value and a negative peak value; 

b) span - the difference between the highest and lowest values of the oscillating value. 

RMS is the most important indicator, since it takes into account the temporal 

development of the studied fluctuations, and it directly displays the value associated with 

the signal energy and, therefore, the destructive power of these oscillations. 

4 Conclusions 

Comparison of the obtained results with experimental data allows us to conclude that, that 

the proposed method adequately determines the process under consideration, signal 

propagation. 
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