
Experience of employment of computational 
models for water quality modelling 

Anatoly Krutov
1,*

, Dilshod Bazarov
2
 , Begzod Norkulov

2
, Bakhtiyar Obidov

2
 and Bobur 

Nazarov
2 

1State Oceanographic Institute, Moscow, Russian Federation 
2Tashkent Institute of Irrigation and Agricultural Mechanization Engineers, Pumping stations, 100000 

Tashkent, Uzbekistan 

Abstract. The purpose of the article is to develop the required and sufficient 

conditions under which numerical methods can be used for engineering 

calculations and for scientific research of hydrodynamic processes in solving 

practical problems related to predicting the spread of pollutants in water 

bodies and streams. The conducted studies consisted in comparing the results 

of laboratory experiments and mathematical modelling, in particular the 

distribution of heat in a stream with different temperature in water layers was 

studied. To check the adequacy of the proposed numerical models, 

calculations were performed and comparisons were made with the results of 

experimental data. The obtained results allowed to determine the boundaries 

of the qualitative difference in the flow behaviour for different numbers of 

Froude and Reynolds. The accuracy of the method was also studied. A 

number of additional requirements for numerical models were proposed in 

addition to approcsimation and stability, such as requirements of 

conservativeness (divergence), existence of trivial solutions on grids, 

possibility to calculate highly unsteady, quasi-stable, pulsating and stationary 

flows, requirement of invariance of linearized equations, as well as the 

requirement of a one-dimensional scheme to be a consequence of a two-

dimensional scheme. Distribution of velocities of wind currents using a 

three-dimensional and two-dimensional model was studied for a real object. 

A shallow-water bay of the Aral Sea was chosen as the object for the 

research. Comparison of the calculation results for both models showed that 

the flow velocity fields, as well as the distribution of pollutants in shallow 

waters, can be performed using a two-dimensional model. 

 

 

 

                                      
* Corresponding author: krutov@bk.ru 

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons 
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

E3S Web of Conferences 97, 05030 (2019)  https://doi.org/10.1051/e3sconf/20199705030
FORM-2019

mailto:krutov@bk.ru


1 Introduction  

Increase in the volume of use of water resources and contemporaneous increase of the 

requirements for the quality of water  withdrawn set a number of tasks the solution of which 

can impact on the efficiency of the facilities and environmental safety. The most important of 

the emerging tasks are: 

 determination of velocity fields in lakes and streams; 

 determination concentrations of pollutants, including temperature and salinity in lakes 

and streams; 

 prediction of bed flow deformations, roiling, and sedimentation; 

 determination the degree of eutrophication of water bodies; 

 development of engineering measures to regulate water quality both in water bodies 

and at water intakes; 

 forecasting of water quality in water bodies. 

The article considers options to cope with one of the mentioned above tasks as movement of 

concervative (nonpartitionable) pollutants in surface wates and consists of the following 

parts: basics on hydrodynamics equations used for mathematical modelling of hydraulic 

processes in water bodies, discussions of numerical models, major requirements for 

numerical models, comparison of the results of numerical calculations with experimental 

data, and conclusions.  

2 Basic equation  

In general, movement of pollutants in surface waters is an extremely complex combination of 

hydrochemical, hydrobiological and hydrodynamic processes. A complete picture of the 

quality of water cannot be described without taking into cjnsideration chemical and 

biochemical kinetics, sedimentation and diffusion of, for example, organic matter and a 

number of other physicochemical processes. In this paper, only hydraulic aspects of the 

movement of pollutants in surface water sources are considered and it is assumed that the 

interaction of chemical components occurs at a high rate, much higher than the propagation 

velocity of small perturbations (c=(gh)1/2+|U|, here h, |U| the depth and modulus of the flow 

velocity, respectively) and is described by first-order equations.  

Sufficient accuracy is required for the design and operational practice as well as high 

efficiency of the methods to apply at engineering practice. These conditions are the 

prerequsits to solve problems while performing mass calculations of investigated objects 

assessing their current condition and forecast possible developments. 

Currently, the most effective way of combining the mentioned conditions is mathematical 

modeling using the equations of hydrodynamics, which allows to identify the most important 

parameters necessary to obtain their numerical values for environmental protection practice. 

The solution of the general equations of hydrodynamics is a complex problem and there are 

still no effective algorithms for solving three-dimensional equations in full definitions. 

However, there are solutions to overvome these difficulties by introducing some hypotheses. 
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According to practice [1, 3 – 19, 30 - 32], for water badies whose horizontal dimensions are 

much greater than the depth, this can be done by introducing a large scale to consider the 

phenomenon of pollution movements. Depending on the degree of model upscaling, three-

dimensional baroclinic fluid equations, two-dimensional Saint-Venant equations, one-

dimensional equations and zero-dimensional equations (balance) could be considered. 

In this paper, to study the capabilities of numerical models that reflect physical processes in 

water bodies and streams the following system of equations was used [2]: 

 



































 





r

Sz

rr

j

jrr

i

i

ii

T

z

z ii

i

j

jii

S

q
z

S
D

zz

wS

x

uS

t

S

z

w

x

u

z

u

zz

u

z
z

xx

z
g

z

wu

x

uu

t

u






































































0

11

                         (1) 

here 

ui - projection of the current velocity vector onto axis xi, 

w - projection of the current velocity vector onto axis z, 

 - liquid density, 

g - component of the acceleration vector of gravity force, 

 - kinematic coefficient of viscosity, 

D - coefficient of vertical diffusion, 

Sr - average substance concentration, 

qSr - internal sources of a substance for the Newtonian fluid. 

The essence of the method of finite differences consists in discretization of time and space 

variables (grid construction) and unknown functions (introduction of grid functions) from 

derivatives and integrals of these functions (construction of a difference scheme on the grid) 

[3 - 19]. As a result, instead of a system of differential or integral equations at each point of 

the considered area, a system of algebraic equations in each discrete structure (cell) of the 

considered area will be obtained. 

2 Theoretical preliminaries: Basic requirements for numerical 
models 

1. Conservatism (divergent). The requirement of conservatism is widely reflected in literature 

[4 – 7, 9 – 20, 22 – 30 ], including the one related to the establishment of boundary 

conditions [2]. 

2. The scheme must have a trivial solution. On grids that do not change over time, the 

fulfillment of this requirement is not difficult. If, however, the grid on the real region changes 

with time, then this requirement leads to the necessity of introducing additional terms into the 

difference equations [3, 14, 36]. 

3. The property of symmetry is necessary, i.e. if U i was changed by – U i in the area 1  m  

M the the solution at points m should be the same as before the replacement at points М – m  

+1. 

4. For currents with small Froude number ( U gh ) the difference scheme did not contradict 

the approximate self-similarity with respect to the Froude number [1, 3, 7 - 10, 30 - 33]. 

5. If the speed at the boundary is changed by a factor of , the velocities in the stationary 

flow (or time-averaged velocities in the pulsating flow) must also change by a factor of  [4 

– 6, 17, 28, 36]. 
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7. A one-dimensional scheme for straightened channels, taking into account the real change 

in the cross-flow area, would be a consequence of a two-dimensional one [1, 9, 11, 19]. 

The following conditions required for vodelling of pollutions transfer [2]: 

1. Divergences (the caracteristic to accurately retaining the grid analogy of the 

impuritymass). 

2. Invariance of the difference equations with respect to the transformation S S C


  , here S 

- pollution concentration, С - constant, 

3. Symmetry. 

4. It is necessary to comply with the independence of the stationary state from time. 
 

4 Numerical models 

 

Following [8] complete equations of motion (without the hypothesis of hydrostatics): 
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In the equations (4), it was assumed that the variation of the stresses along the horizontal 

coordinates is much smaller than along the vertical. Having made such an assumption about 

the flow velocities, the following was obtained from (4): 
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In order to consider the task in the vertical limits independent of x, and y a new coordinate 

system could be introduced: 
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in which the flow area lies in the range from ‘0’ to ‘1’. In these coordinates, the equations 

have almost the same form as in the old coordinates, with W replaced by W 0: 
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Henceforth , the sign “” over variables is implied. 
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In order to find fundamental approaches and cope with the task, let us assume that  and  

are the functions which weakly depend on coordinates and time, and  is the known (set) 

function. In addition, let us neglect the convective vertical transport in comparison with the 

diffusion. These assumptions do not affect fundamentals of the proposed approach. 

Moreover, a large number of tasks can be solved with these assumptions [2, 8]. 

Thus, under the assumptions made, we have the following system of equations: 
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With boundary conditions: 
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Obviously, conditions (6.1) – (6.3) are not sufficient. In fact, as reported in [21], this is the 

main problem when calculating a turbulent flow. This problem is referred in the literature as 

the ‘enclosure problem’. 

One more condition is necessary. However, there are no physical prerequisites for its setting. 

This happened because by moving to the equations in ‘stresses’, we eliminated ‘pressure’, i.e. 

the additional condition is laid down in the original statement of the task. Indeed, integrating 

the first two equations (1), the missing condition could be obtained: 
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With the introduction of equations averaged over the depth, the enclose problem is solved. In 

this case, it turns out to be more convenient instead of condition (6.3) to use the averaged 

equation of continuity: 

                                        








h

t

U h

x

i

i

  0                                (8) 

5

E3S Web of Conferences 97, 05030 (2019)  https://doi.org/10.1051/e3sconf/20199705030
FORM-2019



An algorithm for solving equations (5) for flows with high viscosity using Chebyshev 

polynomials was proposed in [2]. In [2], numerical experiments were carried out to 

investigate the accuracy of the method in the following way: for a given number of 

operations M=nN various ratios of the number of layers ‘n’ were taken and the number of 

polynomials ‘N’: 

1. n=1, N=21 

2. n=7, N=3 

using the heat equation: 
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with the initial condition  U t t
t t
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0  in the point z=0, a numerical solution was 

compared with the analytical one. 

Numerical tests shown that in all cases there is an over time tendency of the numerical 

solution to the exact one [2]. The best matches with the analytical solution, compared with 

other options, were obtained with  n=7, N=3.  

The diffusion of -function on the interval [-1-1] could be used as an the example of such an 

over time-varying solution of the heat equation: 
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This serves as a good illustration of the advantages of solving it with the help of polynomials 

as well as the feasibility of splitting into layers with the representation of the function by the 

number of polynomials N3 [2]. 

There was also a series of numerical experiments for  N=3 (n=7)  with different variants of 

equations for determining ),1(  , , 210 njaaa jjj  . It was shown that the best option is to use a 

quadratic polynom in combination with the Galerkin method [2]. 

One of the serious problems encountered in the prediction of the spread of pollutants is the 

problem of adequacy of simulated results to actual processes. In this respect, the only 

criterion is the comparison of calculations with actual observations. 

5 Comparison of the results of numerical calculations with 
experimental data 

A large number of studies were devoted to the problem of adequacy of the models which 

describe hydrodynamic phenomena in water bodies, for example [10 - 16, 26 – 30,25-27].  

To verify the adequacy of the proposed models, calculations were performed and 

comparisons were made with the results of model studies published in [34]. 

To analyse the effects of stratification on flow behaviour, velocity and density 

measurements were taken under different flow conditions. The techniques used for these 

measurements are explained below. 

The essence of the experiment [34] was as follows: the rectangular channel consisted of a 

50.0m long flume, whose first 0.5m were adapted to create a two layer stratified flow. A 

separate supply of two flows with different temperatures moving at different speeds was 

arranged by two inlets. The height of each inlet was 0.1 m (Fig.1). 

After 0.5m the channel opened and the fluids from the two ducts started to mix. The depth 

of the flow was controlled by an outlet weir to obtain uniform flow with a flow depth of 0.2 
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m. These dimensions classify the channel as a narrow channel, with aspect ratio (BIH) of 1, 

and relative length (LIDh) of 100. 

U 1, T 1

H
H 2

H 1

U 2, T 2

U, T

  

Fig. 1. Scheme of the model. 

The average temperature was measured continuously using a platinum resistance of the 

following dimensions: length - 1.5 cm, width - 0.3 cm, connected to secondary equipment. 

The average velocity was measured by micro-curent meter of 0.9 cm diameter every 2 cm 

from the bottom to the surface. The averaging time was 100 s. 

The mean square deviation of the temperature fluctuations was measured through each 1 cm 

of the profile using a heated wire sensor with dynamic feedback and integrator, which 

allowed to catch information at frequencies from 0.2 to 10 hertz. This seems sufficient for the 

experiment as these frequencies are the most important. 

The effect of the following independent parameters was studied: 

Re 
U h1


 - Reynolds number 

Fr 




U

g h

 - modified Froude number, 

Both Reynolds number and Froude number changed in the experiment in the following 

intervals: 

3 and 2

5Fr9,0

10Re105

1

2

43







U

U

 

here U - velosity difference,  - difference between densities of two flows,  - molecular 

viscosity. 

Experiments allowed to establish boundaries of the qualitative difference in the behavior of 

the flow at various Froude and Reynolds numbers. It was found that at Fr  1,6 there is a 

transition from a stable stratification to an unstable. 

Fig. 2 illustrates the comparison of the experimental data and the numerical implementation 

of the same model for two Reynolds (5*103 and 1*10
4
) and Froude (0.9 and 5.0) numbers.  

As a result of the experiment, vertical profiles of mean temperature (T), average horizontal 

speed (U) and mean-square deviation of the temperature fluctuation amplitude were 

identified. 
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Fig. 2. Comparison of experimental data and numerical modelling. 

As can be seen from the figures, the velocity and temperature of water, determined by 

calculations, best of all coincide with the experimental results for case a), i.e. under Re = 5 * 

10
3
 and Fr = 0.9. In this case, the maximum deviation of the calculated water velocity on the 

surface from the one measured does not exceed 0.20 U/U1 in the whole experimental area, 

and at the level y/h = 0.9 at a distance x/h = 30 it was 0.25 U/U1. 

In case b), i.e. under Re = 1 * 10
4
 and Fr = 5.0, the maximum deviation of the calculated 

water velocity from the measured one on the water surface does not exceed 0.05 U/U1, and at 

the level of 0.8 y/h does not exceed 0.25 U/U1. The maximum deviation of the calculated 

water velocity was fixed at a distance x/h = 30 at a depth of 0.9 y/h. At this point, the 

deviation was 0.34 U/U1. 

At a distance x / h = 100, the coincidence of the flow rates obtained in the experiment and as 

a result of the calculations turned out to be good in both a) and b). The proposed model better 

described the temperature distribution in the flow with Fr = 5.0. Most likely this is due to the 

fact that the model describes the turbulent flows fairly well. 

The problem of adequacy lies not only in comparison of the results of calculations with the 

data of experimental studies but to a large extent in the complexity of conducting both 

laboratory and full-scale experiments [29]. From this point of view, the results of the 

comparisons given in [9, 2] show that models similar to (1) are in a good agreement between 

the results of measurements and calculations. 

A good agreement between the experimental data published in [27, 28] and the numerical 

implementation suggests that the proposed model describes turbulent flows well and can be 

used for numerical modelling of objects with different-density flows. 

Comparison of acual wind borned current in the channel in physical model [34] and 

calculations were made to of determine the adequacy of the proposed model. The result of the 

comparison is presented in Figure 3. 
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Fig. 3. Comparison of experimental data and numerical modeling for the wind current in the channel. 

The results of detailed studies of the properties of the model (5) and a comparison of the 

results of calculations using other models are given in 27. Comparisons made showed good 

agreement with the results of calculations using the proposed model. 

6 Conclusions 

The accumulated practical experience of applying finite-difference schemes for the solution 

of dynamic tasks made it possible to find the necessary conditions under which numerical 

methods can be used for engineering calculations and studies of hydrodynamic processes.  

To solve practical problems associated with predicting the muvement of pollutants in water 

bodies and streams, a grid-spectral method was developed that showed high efficiency in the 

case of stratified currents. This is especially justified for solving problems associated with the 

calculation of stratified flows. An algorithm based on the use of integro-interpolation 

methods was developed. The algorithm allows to carry out calculations with large time steps. 

Numerical studies using a three-dimensional model of flow and dispersal of pollutions in the 

investigated reservoir showed that, in general, the velocity fields at different depth levels are 

identical, i.e. the influence of three-dimensionality is insignificant. Therefore, it is advisable 

to carry out numerical modeling of the distribution of pollutions across the water area of 

reservoirs with similar characteristics using a two-dimensional (plan) model. 

Numerical simulation using a two-dimensional model gave a picture of the velocity and 

impurity fields over the area of the reservoir in the dynamics of development over a period of 

5 years as well as the field of maximum values of pesticide -HCH. 
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