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Abstract. For the solution of engineering problems require increasingly 

accurate estimates of the hydraulic characteristics of the water streams. To 

date, it is impossible to consider sufficiently complete theoretical and 

experimental justification of the main provisions of the theory of 

turbulence, hydraulic resistance, channel processes. The composition of 

tasks related to flows in wide channels, turbulence problems are of 

scientific and practical interest. Various interpretations of the 

determination of the critical Froude number in wide open water flows 

based on observations and theoretical transformations are considered. The 

conditions for the emergence of a critical regime of water flow in an open 

wide channel are analyzed in order to estimate the critical Froude number 

and critical depth. Estimates of the critical Froude number for laboratory 

and field conditions are given. The estimations allow us to consider the 

proposed approach acceptable for determining the conditions of 

occurrence of the critical flow regime. The General, physical 

interpretation of conditions of occurrence of the critical regime of water 

flow on the basis of phenomenological approach is specified. The results 

take into account the values of the components of the total specific energy 

of the section. This shows the estimated calculation. The results obtained 

theoretically make it possible to compare the above interpretations and 

determine their applicability, and the results of the analysis can be useful 

for the estimated calculations of flows in channels and river flows in rigid, 

undeformable boundaries and with minor channel deformations. 

1 Introduction 

The operation of hydraulic structures in the specified modes and conditions of use, 

maintenance and operation, that is, the reliability and safety of their work is provided by 

reliable calculations in the design of structures. The accuracy of calculations of the key 

characteristics of water flows is necessary in solving engineering problems related to 

hydraulic engineering, forecasting and regulation of channel processes, prevention of 

accidents at various hydraulic structures, pressure and non-pressure, including canals and 

rivers, and the development of measures to eliminate environmental crisis situations. 
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Until now, it is impossible to consider sufficiently complete theoretical and 

experimental substantiation of the main provisions of the theory of turbulence, hydraulic 

resistance, channel processes, as well as determining the basic parameters, for example, the 

potential and kinetic energy of the water flow in the pressure and non-pressure channels. In 

determining the energy of water flow in open channels, unlike pressure flows, often do not 

take into account the differences and some features of the flow. 

According to the study of the critical regime of open flows, works are known [1-11]. In 

most cases, hydraulic calculations are carried out using well-known, traditional formulas, 

often without asking about their applicability to the conditions of water flow in a particular 

watercourse. 

The composition of problems associated with the flow of pressure and non-pressure pipes, 

wide channels, turbulence problems, axisymmetric flows in smooth and rough pipes are of 

scientific and practical interest. 

2 Methods and results 

The critical mode is considered to be the boundary state of the flow during its transition 

from a turbulent state to a calm or from a calm state to a turbulent one. 

The critical state of the water flow in the pressure and non-pressure flows formally 

(without any physical explanation) is usually associated with a minimum specific energy of 

the cross section at a given flow rate. It is characterized, in addition, by a number of 

conditions [2, 12-14]: the water flow rate is maximum at a given specific energy; the 

velocity head is equal to half the average depth of the flow in the channel of a small slope; 

the Froude number is 1; the velocity of the flow in the channel of small slope with uniform 

velocity distribution is equal to the velocity of propagation of small gravitational waves 

created by local disturbance in the basin of small depth. The movement of fluids in critical 

or close to critical state is unstable. This is due to the fact that a small change in the specific 

energy of the cross section corresponds to a significant change in depth in the vicinity of 

the point with coordinates hk; Э (Fig. 1). 

 

Fig. 1. Energy dependence of the cross section Э from depth h.: Eр – potential energy of section, Ek – 

kinetic energy of section, hk – critical depth. 

With this deviation, the depth of the flow changes towards a smaller or larger value of 

the conjugate depths corresponding to the specific energy of the cross section after the 

change [2, 5, 8, 15-20]. In this case, the water surface is either a bumpy, unstable, wave 

surface, or there is a hydraulic jump. When designing channels, if the depth of the flow for 
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most of their length is close to the critical depth, the slope and shape of the channel must be 

changed to ensure the stability of the structure. 

The specific energy of the cross section is determined by selecting the reference plane 

0-0, coinciding with the bottom (z = 0) and recorded as (Fig. 2): 
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where h – dерth, V – average speed, 
g

p

ρ
 – pressure head. 

 

Fig. 2. Schematic cross-section of unconfined channel, indicating depth, energy when water moves 

slowly: 1 – energy line, 2 – free water surface, 3 – current tube, 4 – line current, 5 – the bottom of the 

channel, 6 – the reference plane. 

The term 
g

p

ρ
 in the expression (1) is usually interpreted as the specific energy of the 

pressure and using the equation of hydrostatics is equal to the depth of the flow h. For a 

channel with a low slope and at =1, the expression (1) is written as: 
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In the usual interpretation of the critical regime it is considered [1], that at depths h < hк 

the flows are turbulent and kinetic energy prevails in them; at h > hк the flows are 

considered calm with the predominance of potential energy. If the basis of the physical 

interpretation of calm and turbulent regimes to accept these conditions, then the critical 

regime is logical to associate with the equality of potential and kinetic energy. Under 
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 this condition, we write in the form: 
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where we find that the critical Froude number corresponding to such an interpretation of the 

critical regime 

2kFr      (4) 

3

E3S Web of Conferences 97, 05006 (2019)  https://doi.org/10.1051/e3sconf/20199705006
FORM-2019



When integrating (2) with Э/h=0 and /B=hср we obtain for a rectangular cross-

section of an open flow with a small slope and at =1 the criterion for the critical state of 

the flow 
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which is formulated as follows: in the critical state of the flow, the velocity head is equal to 

half the average depth [2]. 

If we assume that the specific potential energy of the cross section is h/2, the critical 

condition of equality of the potential and kinetic energy of the cross section is written as: 

g

Vh kk

22

2

 ,     (6) 

which leads to a critical Froude number Frk = 1. 

The condition of equality of the potential and kinetic energy of the cross section, 

although formal, is physically more transparent than the condition of the minimum specific 

energy of the cross section (see below), which does not have any physical interpretation. 

Let us consider the potential energy of the open flow section in more detail. The 

potential energy of the mass of liquid passing through the volume element dz at a height z is 

equal to the work on the delivery to this height z from the plane 0-0 of the amount (weight) 

of the liquid 1dρ  zgu s, which passes through dz in the longitudinal direction per unit 

time. 

zdzgudEp  ρ     (7) 

Using the power profile of the velocity: 
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where the exponent n depending on the coefficient of hydraulic resistance λ в открытых 

широких каналах [9]: 

n = 1.25 λ       (9) 

The potential energy of the liquid passing through this section per unit time can be 

found as follows: 
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Then the specific potential energy of the flow passing through the cross section per unit 

time will be equal to: 
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The calculation results 1pE  for different n are given in table 1. 

Table 1. The dependence of the exponent n in the formula (8) on the 

potential energy 1pE . 

n 0 0.1 0.14 0.2 

1пE  h5.0  h524.0  h533.0  h545.0  

With this method of determining the potential energy of the cross section, its difference 

from h/2 at n > 0 is small, but still noticeable. 

In determining the minimum specific energy of the cross section are determined by the 

conditions under which this minimum is achieved for a given flow rate Q [8]. In this case, 

for a rectangular cross-section of the channel: 
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The critical Froude number 
k

k
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 is in this case (at h
g

p


ρ
) equal to 1. 

A similar analysis, performed under the condition that the potential energy of the cross 

section is close to h/2, gives a slightly greater value of the critical depth: 
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and the critical Froude number 
2

1
kFr . 

A common physical interpretation of the transition of the water flow in an open flow 

from the quiet mode to the turbulent mode is such a flow velocity that exceeds the velocity 

of propagation of small wave perturbations C, usually determined by the Laplace formula: 

ghC       (14) 

Then the condition corresponding to the critical flow regime is written as: 

kk ghVC       (15) 

Equation (15) can easily be cast to the form: 

1
2
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k

k
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V
 

The coincidence of the critical Froude number obtained on the basis of the "wave" 

interpretation with the critical Froude number obtained from the condition of the minimum 

specific energy of the cross section, it would seem, allows us to assume that both the 
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critical mode and the corresponding Froude number 1kFr  are determined physically 

reasonable and unambiguously. 

We discuss the last physical interpretation of the critical regime in more detail. Note 

that in this analysis, the velocity C was determined by the Laplace formula, which is a 

special case of a more General expression for the wave velocity [21]: 

в

в Hg
C

λ

π2
th

π2

λ
 ,     (16) 

where вλ  is the wavelength of the disturbance on the flow surface. 

Comparison of the formulas (15) and (16) showed that the Laplace formula corresponds 

quite accurately to the dependence (16) only at 
h

вλ
>6π (6π = 18.84). Thus, the use of the 

dependence (14) in the analysis of critical regimes is possible only for wave disturbances 

whose length is almost 20 times or more than the depth of the flow. When 
h

вλ
< π, the 

value 

h
в

π2
th  becomes close to 1, and the dependence (16) is simplified to the form: 

h
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Using the dependence (17), it is true for wave perturbations having a length 

commensurate with the depth of the flow, the condition Vk=С gives: 
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and 
kFr  is equal to 1 only if the value 

k

в

h

λ
=2π (which is beyond the range of waves of 

small length). 

The calculations according to (18) show that the critical Froude number is significantly 

less than 1 under wave disturbances, the length of which is less than 2πh. 

Thus, the "wave" interpretation of the critical regime does not give unambiguous results 

on the critical Froude number. 

The only difference between turbulent and calm flows is the bumpiness of the free 

surface, which is associated with the manifestation of turbulent pulsations of velocity and 

pressure on the surface. This physical feature can be used as a more General physical 

interpretation of the critical regime. 

It is obvious that small-scale disturbances on the flow surface can be suppressed by 

surface tension forces. Analysis performed using Laplace's formula for pressure caused by 

surface tension at free surface curvature: 

r
pЛ

σ2
 ,     (19) 

where  is the surface tension. 
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Perturbations with a radius of curvature of the free surface r < 1.5 cm will be suppressed 

by surface tension. Photos of the free surface of turbulent flows, made with low exposure, 

reveal the stochastic nature of the tuberosity, which is mixed along the flow at a rate close 

to the flow rate (Figure 3). Adopting the standard of turbulent pressure pulsations in the 

bottom flow area 

2

*ρ5.3 up      (20) 

and considering that this perturbation will "manifest" on the surface of the flow by 

stochastic tuberosity in height h , we write 

2

*ρ5.3ρ uhgp  ,       (21) 

where 
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      (22) 

 

 

Fig. 3. Free surface of turbulent flow. 

Using the known relationship between the dynamic and average flow rate 
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the expression (22) is written as 
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The expression (23) shows that the height of the tuberosity on the free surface of the 

flow increases with the number of Froude and the coefficient of hydraulic resistance λ. 

A numerical estimate of the Froude number at which a distinguishable tuberosity 

appears on the flow surface for laboratory conditions at h ~ 0.1 m and λ = 0.02 gives 
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For natural conditions (for example, a mountain river, h ≈ 1 m; ≈ 10
-2

 m; λ = 0.025) the 

critical number of Froude will be 
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The given estimates of the critical Froude number, performed on the basis of the 

proposed phenomenological approach, give numerical values of the critical Froude number 

close to 1.0, which allows us to consider the proposed approach physically and formally 

acceptable for determining the critical flow regime. 

Various interpretations of the appearance of the critical regime of water flow in an open 

stream are considered: 

 Physical interpretation. 

 Energy interpretation 

 "Wave" interpretation. 

In the first interpretation, the generally accepted critical Froude number is equal to one, 

provided that the specific kinetic and potential energy of the cross section is equal, in this 

case, the specific potential energy of the cross section is hk/2. However, this interpretation 

is the most transparent for understanding. 

The second interpretation shows that the potential energy of the Эп at a different 

coefficient of hydraulic resistance is slightly different from h/2, but in a rectangular channel 

the minimum specific energy of the cross section corresponds to the critical number of 

Froude equal to 1. 

In the third, "wave" interpretation of the evaluation of the critical Froude number, based 

on the Laplace formula for determining the wave velocity in a wide channel, it is easy to 

obtain the traditional Frk = 1, but only for long waves. For short waves Frk is less than one, 

which shows an example of calculation. Visual picture of the differences between turbulent 

and tranquil flows, this interpretation is clearly, it can be used in the generalization of the 

physical interpretation of the critical flow regime. 

Based on the phenomenological approach, three interpretations of the conditions of 

formation of the critical regime in an open stream are considered, estimates of the critical 

Froude number and the critical depth for different conditions are made. Evaluation 

calculations for laboratory and natural conditions show the acceptability of the Analyzed 

traditional formulas used in hydraulic, hydrological calculations, for their applicability. 

The concept of critical mode is used in solving many hydraulic problems of calculation 

of water facilities. The concepts of critical depth and critical Froude number are used. 

Traditionally, these concepts according to B. A. Bakhmetev are associated with the concept 

of minimum specific energy. 

This article describes other possible more accurate determination of the critical 

globemark, which is taken into account in the analysis of the forms of the free surface flow. 

The comparison of RCR calculated on the basis of energy, wave and pulsation approach 

allowed to establish the influence of the coefficient of hydraulic resistance on the critical 

number of Froude and to obtain the corresponding calculated dependences.  

As a result of the analysis, a critical Froude number close to one is obtained. 
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