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Abstract. In the framework of linear theory, the stability of counter 

vortex flows with respect to non-axisymmetric perturbations is investigated 

numerically. The main flow field calculation results have been obtained as 

the solutions of the Navier-Stokes equations. The amplification 

coefficients are calculated, the regions of instability of the flow are 

defined. 

1 Introduction 

Counter vortex flows are formed in the interaction of two (or more) coaxially rotating 

flows, swirled in mutually opposite directions. In technical applications, counter vortex 

flows are used in combustion chambers, gas turbine engines, heat exchangers, bioreactors, 

fermenters, cooling towers, and other technical devices [1-3].  

In hydrotechnical construction, counter vortex flows are used in vortex spillways to 

quench the energy of high-speed water flows [4], in counter-vortex aerators [5, 6] to create 

two-phase water-air flows. A detailed classification of devices using the interaction effect 

of oppositely swirling flows of liquid and gas is presented in [7]. 

The hydraulic characteristics of counter vortex flows were studied in [8]. An analytical 

study of the main flow field based on the Oseen model, is given in [9]. The study of local 

stability of swirling flows using the Rayleigh number criterion is presented in [10]. 

This paper is devoted to numerical modeling of hydrodynamics and stability of counter 

vortex flows using the full system of Navier-Stokes equations to calculate the main flow. 

The stability of the swirling axisymmetric flows is considered on the assumption of local 

parallelism using numerical method: the problem of the normal modes developing against 

the background of the axisymmetric flow determined by the velocity profiles in local cross 

sections of the flow is solved. 

2 Hydrodynamic flow model 

We will consider a viscous incompressible flow in an axisymmetric channel with solid 

impermeable walls. Internal swirling flow is fed to the central part of the channel 

( 00 rr  ). External flow, rotating in the opposite direction, is fed into the peripheral part 
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of the channel ( 10 rrr  ). The present analysis is based upon the numerical solution of 

the full Navier-Stokes equations. In the cylindrical coordinate system zr ,,  the Navier-

Stokes equation can be represented in terms of the stream function  , the vorticity   and 

azimuthal velocity zV  in form: 
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System (1) – (4) is presented in conservative form and contains the two dimensionless 

parameters: the swirl number 00 /UWG   and the Reynolds number  /Re 00 rU  (where 

  is the kinematic viscosity). Here the radius 0r  is taken as the characteristic length, the 

axial zV  and the radial rV  velocities are related to the maximum axial velocity 0U  at the 

channel inlet, and the azimuthal velocity is related to its maximal value 0W  at the channel 

inlet ( 0z ). 

The flow is considered in the cylindrical domain D  ,0( kzz  krr 0 , 

01 / rrrk  ). The boundary conditions involve specifying the velocity profiles at the inlet 

section, no-slip conditions on the rigid surfaces, and symmetry conditions on the axis 0r  

and soft boundary conditions should be given at the outlet section kzz  . The set of 

boundary conditions can be written in form 
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The function )(rf  is defined from the initial distribution of the axial velocity for 0r  

according to (4). The initial velocity distribution is defined as: 
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The values of the coefficients in expressions (6) – (7) are equal to A 0.554, B 8, 

1cr 0.94, 2cr 1.06, 3cr 3.94, 1ar 0.9, 2ar 0.94, 3ar 1.6, 4ar 3.94, 4kr . 

To solve numerically the boundary value problem (1)–(4), (6)–(10) the finite difference 

method [11] was used with a uniformly spaced grid 81x257 for 30kz . The time step t  

was taken from the range between 0.05 and 0.2. The solution of the boundary-value 

problem (1)–(4) with boundary conditions (5)–(10) depends on four parameters: the 

Reynolds number Re , the swirl number G , the initial values of the external flow velocities 

*
zV  and *

V . The flows were investigated over the following ranges of the parameters: 

500Re30  , 30 G , 8.01.0 *  zV , 06.1 *  V . The total number of cases 

calculated was about 200. The most important properties of the flows are associated with 

the development of recirculation zones in the near-axis and near-wall sections in the 

neighbourhood of the tangential swirler. The most characteristic streamline patterns 

const  are shown in Fig. 1. 

Comparison of the numerical results with the experimental data [12] for turbulent flows 

in a vortex chamber with oppositely rotating flows is given in [11]. Good agreement 

between the results was obtained using a turbulent analogue of the Reynolds number, 

calculated from the turbulent viscosity t  using the following expression 







81
Re 00

t
t

rU
                                                            (11) 

where   is the hydraulic drag coefficient,   is the universal constant. The coefficient 

  varies in the range of 0.011–0.03. The values of the universal constant   are 0.2, 0.07 

for water and air, respectively. In this case, the turbulent Reynolds number is 80–135 for 

water and 230–385 for air. Therefore, the calculations performed in the selected range of 

Reynolds numbers allow us to correctly describe the flow hydrodynamics. For all cases 

considered in [12], the axial velocity distribution on the flow axis, the diameter of the 

reverse zone and the counter flow rate are in good agreement with experimental data. 
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Fig. 1. Streamlines at 100Re  ; 8.1G ; 3.0* zV ; 4.0;2.0;0* V  (a-c); 250Re  ; 

8.1G ; 3.0* zV ; 2.0;1.0;0* V (d-f). 
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3 Hydrodynamic stability 

Let us consider small perturbations of the traveling wave type (normal modes) for the 

calculated flows, determined by the profiles of the axial )(rU  and the azimuthal )(rW  

velocity components in local flow cross sections 

    )](exp[,,,,,, tcnziPHSiFpVVV rz                               (12) 

Here p  is the pressure,   is the wave number, n  is the perturbation mode 

;...)2;1;0( n , (the positive values of n correspond to the wave propagation in the 

direction of swirl, whereas the negative ones correspond to that in the opposite direction), 

c  is the wave speed, i  is the imaginary unit. Then, for the complex-valued amplitude 

functions )(rF , )(rS , )(rH , )(rP  we obtain the following system of equations: 
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Here rnWcU /)(  ,  /Re 0 LU  is the Reynolds number, 0U  is the axial 

velocity for 0r , L  is the vortex core radius corresponding to the maximal value of 

)(rW , and the prime indicates the derivative with respect to r . 

Assuming that the solution near the axis 0r  is regular, we come to the following 

boundary conditions for (13)–(16): 

,0)0()0(  HS 0forbounded)0(),0(  nPF                              (17) 

,0)0()0( HS 10)0()0(  nwherePF                                  (18) 

1w0)0()0()0()0(  nherePFHS                                   (19) 

0)()()(  kkk rFrHrS                                                 (20) 

We consider the perturbations (12) for which 0  is a real number. In this case, an 

eigenvalue ir iccc   specifies the phase velocity of the wave rc , the oscillation 

frequency rr c , and the amplification coefficient ii c . When 0ic  and 0ic , 

the amplitudes in (12) grow with time and are damped out, respectively. 

The method of calculating the eigenvalues consists of several steps. Near the singular 

point 0r  we construct asymptotic solutions by the Frobenius method; these solutions 

allow us to transfer the boundary conditions to the point arr  . From this point we 

continue the solutions by a Runge-Kutta method with automatic step control and with the 
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Gram-Schmidt orthogonalization. The numerical solutions are matched at the point cr  

)( kca rrr   with Newton's method used for the corresponding characteristic equation. We 

used this method in [13-15] to analyze the stability of swirling flows of various types. 

The calculation examples of problem (13)–(16) with conditions (17)–(20) are presented 

at Fig. 2. The flow stability was investigated for perturbations (12) with 1n , since, 

according to [16-17], this mode is the most dangerous for both swirling pipe flow and for 

free vortices, while in [18] it is shown that it is probably precisely this mode that is 

observed in the experiments. 

4 Conclusions 

The mathematical model used to study the hydrodynamics of the counter-vortex flows 

allows one to fairly accurately describe the structure of swirling flow with the formation of 

axial recirculation zones. 

Considering the local cross sections, we find that as z increases the flow instability first 

rises and then falls. Thus it is possible to identify a certain region of instability bounded 

with respect to z  and possessing the following properties: for fixed swirl an increase in the 

Reynolds number amplifies the flow instability, and the region of instability itself grows 

larger; for fixed Re an increase in swirl leads to only a slight upstream displacement of the 

boundary of the region of instability; when a reverse flow zone is present, the strongest 

instability is observed in that zone. 

Increasing the swirl of the external flow has a stabilizing effect on the counter vortex 

flow in all the considered cases. 

 
The work was carried out with financial support from the Russian Foundation for Fundamental 

Research (project No 18-01-00762). 
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