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Abstract. This article was devoted to the development of methods of the 

dynamic calculation based on the finite difference method of laminar 

structures in the framework of the bimoment theory, which takes into 

account the spatial stress-strain state. Were given the solutions of the 

problem of transverse vibrations of the plate model of structures.  

1. Introduction  

Structures such as water retaining dams, dykes, water reservoirs, etc., built and operated in 

seismically active regions of the Republic of Uzbekistan, are subjected to loads of both 

static (gravitational forces, natural external loads, etc.) and dynamic (seismic) nature. In 

dynamic calculation of this type of structures according to the “standard procedure, 

designers are limited by the possibility of obtaining only the most approximate reliability 

estimates.The ways to the main reserves of increasing the efficiency of the 

structureconstructions are unavailable, since these reserves are found only when 

considering the wave nature of dynamic loads (seismic) and are connected with the 

necessity of assuming irreversible strains in a structure”. To determine the reserve 

capabilities of water retaining structures in calculations, various linear and nonlinear 

models are used in a planeor spatial form [1-7]. 

This article proposes a method for calculating the structures for seismic resistance on 

the basis of a continuum plate model developed in the framework of the bimoment theory 

[8–17], taking into account the spatial stress-strain state. If to consider the law of 

nonlinearity of displacements distribution in the cross-sections of the plate, then in addition 

to tensile and shear forces, bending and torsional moments, there appear the additional 

force factors, called the bimoments. 

2. Method  

In the development and solution of the problem of bending and vibrations of thick plates is 

based on bimoment theory of plates built within the three-dimensional theory of elasticity 

                                      
* Corresponding author: toshmatov.elyor@bk.ru 

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons 
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

E3S Web of Conferences 97, 04072 (2019)  https://doi.org/10.1051/e3sconf/20199704072
FORM-2019



without simplifying hypotheses, using the method of displacements expansion into 

Maclaurin infinite series on one of the spatial coordinates. 

It is assumed that the displacement of the structure base occurs only along the horizontal 

transverse direction according to the following law: 

)(,0 30321 tuuuu  .      (1) 

Where )(30 tu
 
is the law of base motion, given in the following form: 

)sin()( 03030 tAtu  ,      (2) 

where 0A
 
and 0  are the amplitude (maximum value) and frequency of displacements of 

the base 
0

0
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
 . In calculations we take mm30 A

 
and sT 1.00  . 

The plate is under water pressure distributed along the vertical according to a law: 

 ybpp  0 , 

where 0p
 
is the pressure parameter, b  is the height of the dam. 

As the equations of motion of the plate model of a structure, the equations of bending-

shear oscillations of a thick orthotropic plate are taken, which are written relative to 

bending, torsional moments, shearing forces, bimoments and kinematic equations in the 

form: 
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3. Results 

3.1 Analysis of numerical results for a plate model of structures (dams) 

The calculations have been conducted for an isotropic plate with plate dimensions in plan 

m.8Hm,25bm,25a   

From kinematic conditions (1) and (2) it follows that in the sidel faces and in the base of 

the dam axx  21 ,0
 
and 02 x , the boundary conditions must be met in the form: 
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303030212121 tuWtuturuu    (9)

 
At the free upper face of the dam construction, the conditions for zero force factors are 

obtained 

,0~,0,0,0,0,0 232322122212  pQPPMM
 

0,0~,0~,0~ *
22121123 p      (10)

 Figures 1-5 show the modes of oscillation, the law of change in time of displacements 

and force factors of the plate - dam. 

Figure 1 shows the graphs for changing the dimensionless values of the deflection r of 

the plate depending on dimensionless time  . From the graph it is seen that at the point of 

the plate by
a

x  11 ,
2

, the dimensionless value of the deflection, reaching the maximum 

value, is 526.2r  (figure 1,b). 

a) 

rk

 

b) 

 

Fig.1. Modes of oscillations of the plate structure (dam) (a) and the graph of deflection r  changes 

over time (b) 

Figure 2 shows the stress 11  isolines. Figure 3 shows the graphs of changes in the 

dimensionless values of the stress 11
 
of the plate depending on the dimensionless time  . 

It is clear from the graph that at the point of the plate byx  11 ,0 , the dimensionless 

stress value reaching the maximum value is  574,111   (figure 3). 
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11  

Fig.2. Isolines of stress 11 . 
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Fig.3. Graphs of stress 11 changes over time 

Figure 4 shows the isolines of stress  22 . Figure 5 shows the graphs of changes in 

the dimensionless values of stress  22
 
of the plate depending on the dimensionless time  . 

It is clear from the graph that at the point of the plate 0,
2

11  y
a

x , the dimensionless 

stress value reaching the value 772.022   (figure 5) is maximal. 
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22  

Fig.4. Isolines of stress 22 .
 

 

Fig.5. Graphs of stress change 22
 
over time.

 

Table 1, a. Maximum dimensionless values of displacement, stress,  

moments and shear forces on a plate - dam 

State 0/~ Ar  
01

11
~

AE

H
 

01

22
~

AE

H
 

01

11

~

HAE

M
 

01

22

~

HAE

M
 

01

13

~

AE

Q
 

01

23

~

AE

Q
 

With water 2.526 -1.574 -0.772 -0.156 -0.087 0.448 0.242 

Without 

water 
2.435 -1.523 -0.668 -0.151 -0.077 0.440 0.211 
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Table 1,b. Maximum dimensional values of displacement, stress, 

moments and shear forces on the plate – dam 

State 
r , 

(10-3m) 
11 , 

(MPa) 

22 , 

(MPa) 

11M , 

(MPa·m2) 

22M , 

(MPa·m2) 

13Q , 

(MPa·m) 

23Q , 

(MPa·m) 

With 

water 
7.578 -11.805 -5.790 -74.880 -41.760 26.880 14.520 

Without 

water 
7.305 -11.422 -5.010 -72.480 -36.960 26.400 12.660 

In calculations, the calculation step for the dimensionless coordinates is taken as 

32

1
 ух . The stability of iteration over dimensionless time is provided by an explicit 

scheme with a step 01.0 . Here 
H

ct

b

x
y

a

x
x  ,, 21 . 

3.2 Analysis of numerical results for a orthotrop plate model of structures 
(wall) 

As equations of motion of aorthotrop plate model of structure, the equations of bending-

shear oscillations is taken, which are written relative to the bending, torque, cutting forces, 

bimoments, and kinematic equations in the form.At the base of the structure, the boundary 

conditions for the bending-shear oscillations have the form: 

)(
~

),(
3
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~
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~

,0~,0~
303030212121 tuWtuturuu  .  (13) 

On the free face of the structure, the conditions for zero force factors are 

,0,0,0,0,0 1312111211  QPPMM  

0,0~,0~,0~ *
11121113 p .    (14) 

On the free upper face of the structure the conditions are 

,0,0,0,0,0 2322122212  QPPMM
 

0,0~,0~,0~ *
22121123 p .      (15)

 

Figures 6 and 7 show the modes of oscillation, the law of change in time of 

displacements and force factors of the wall. 

Figure 6 shows the graphs for changing the dimensionless values of the deflection r  of 

the wall depending on dimensionless time  . From the graph it is seen that at the point of 

the wall byax  11 , , the dimensionless value of the deflection, reaching the maximum 

value, is 52.1r  (figure 1, b). 
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a) 

 

b) 

 

Fig.6. Modes of oscillations of theplate structure (wall) (a) 

and the graph of deflection r changesover time (b) 

 

 

Fig.7. Graphs of stress 11
 
changes over time 

Figure 7 shows the graphs of changes in the dimensionless values of the stress 11
 
of 

the wall depending on the dimensionless time  . It is clear from the graph that at the point 

of the wall byx  11 ,0 , the dimensionless stress value reaching the maximum value is 

07,011 
 
(figure 7). 

Table 2. Maximum dimensionless values of displacement, stress,  

moments and shear forces on the plate-wall 

Dimensions 

of the plate 

- wall (m) 
0/~ Ar  

01

11
~

AE

H
 

01

22
~

AE

H
 

01

11

~

HAE

M
 

01

22

~

HAE

M
 

01

13

~

AE

Q
 

01

23

~

AE

Q
 

4x3x0.5  1.52 0.07 -0.051 0.013 0.01 0.00938 0.011 
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In calculations, the calculation step for the dimensionless coordinates is taken as  

15

1
,

20

1
 ух . The stability of the iteration on a dimensionless time is provided by an 

explicit scheme at step 01.0 . Here 
H

ct

b

x
y

a

x
x  ,, 21 . 

4. Conclusion 

Bimoment theory is a new theory which is built to calculate the precise displacements, 

forces, moments, bimoments and stresses of the plate, and it is applied to solving the 

dynamic problem of forced oscillations of orthotropic thick plate and it’s based on the 

method of finite differences. 

In conclusion, analysis of the obtained results shows that the developed methods for 

numerical solving seismic oscillation problems and the method, algorithm and dynamic 

calculation program based on the finite difference method of plate structures in the 

framework of the bimomental theory adequately fully reflect the stress-strain state of plate 

structures with seismic effects with and without water pressure.. 
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