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Abstract. The article specifies the formulation and solution of problems on 

the interaction of a long incompressible and compressible pile with the 

surrounding and underlying subgrade firm soil by an analytical method. It 

is indicated, that there is the significant effect of the compressibility of the 

pile shaft on the patterns of force distribution applied to the long pile top 

between the side surface of the pile and its lower end. The force that comes 

on the pile toe bulb substantially depends on the ratio of the stiffness of the 

surrounding and underlying soils
1 2( / )G G . With the decrease of this ratio, 

all things being equal, the force on the pile toe bulb increases. It grows 

with a decrease in the ratio of the radii of the pile and the surrounding 

thick-wall soil cylinder ( / )G a . The analysis of the problem solution 

showed that it is possible to find the optimal ratios between the 

parameters
1 2/ , / , /G G b a l a , at which the force on the pile toe bulb 

reaches the optimum value wherein the bearing capacity of the underlying 

soil is at the most used at a given degree of approximation to the limit 

value. 

1. Introduction  

Long bored piles are now widely used in construction under difficult engineering and 

geological conditions. The length of such piles reaches 100 m, and the diameter is 2.5-3.0 

m, and their bearing capacity reaches several thousand tons. Full-scale experiments are 

carried out to quantify the interaction of such piles with the surrounding and underlying 

soils and determine their bearing capacity and sediments [1,2]. However, they are very 

expensive. Therefore, analytical and numerical decisions on the interaction of a long pile 

with the surrounding soils remain relevant. Analytical solution of the problem to solve 

allows finding the optimal length and diameter of the pile, at which the force on pile toe 

bulb will be optimal for a given degree of approximation to the limiting state. Existing 

analytical solutions of this problem do not take into account the compressibility of the pile 

shaft, which is reflected in the patterns of distribution, force on the pile top between its 
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lateral surface and its lower end. This article presents the formulation and solution of 

problems on the interaction of long and compressible piles with surrounding and underlying 

soils, including the definition of settlement and bearing capacity of the pile, as well as the 

distribution of force on the pile head between its side surface and under pile toe bulb. They 

are necessary to determine the number and pitch of piles under the piled rafts with high 

grillage at (5-6)d pitch. 

Experimental studies show that the force coming to the lower end of the pile does not 

exceed 15-20%; therefore the main part of the pile comes from the side surface of it. This is 

confirmed by the results of full-scale experiments (Table 1) and numerical calculations of 

the mode of deformation of pile and the surrounding soil during their interactions (Fig. 1). 

The analysis of these curves and the calculations of other authors [1] show that the 

interaction of long piles with the surrounding and underlying soils involves a limited 

amount of soil both around it and under its lower end. This makes it possible to consider a 

thick-wall soil cylinder of limited dimensions (diameter, length) as a calculated 

geomechanical model, containing a long pile and represented by relatively dense soils, and 

there is practically no influence of the pile outside this volume. 
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Fig. 1. Isofields of vertical displacement of soil around a pile 46.8 m long 

and 1.2 m in diameter (calculated by FEM) 
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Below is given the formulation and analytical solution of problems on the interaction of 

long, incompressible and compressible bored piles with the surrounding and underlying 

linearly deformable soils, taking into account their linear properties under the action of 

constant force acting on the pile top. 

Table 1.1. Force (t) on a pile 46.8 m long according to test results 

Distance from the pile top, m 

F
o

rc
e 

o
n

 t
h

e 
p

il
e 

sh
a

ft
 i

n
 d

ep
th

, 
t 

0m 2m 10m 17m 39m 45m 

250 250 246 195 18 - 

500 500 456 362 75 14 

750 750 690 580 178 50 

1000 1000 919 818 309 93 

1250 1250 1174 1054 456 144 

1500 1500 1376 1262 601 205 

1750 1750 1651 1523 769 292 

2000 2000 1906 1758 945 386 

2100 2100 2086 1949 1045 457 

2200 2200 2138 2001 1083 477 

2300 2300 2234 2084 1143 518 

2400 2400 2334 2177 1414 561 

2500 2500 2428 2268 1264 587 

2. The interaction of a single long incompressible pile with the 
surrounding and underlying soils 

As a computational geomechanical model, we consider a thick-walled soil cylinder of 

limited size
1( ,2 )l a , containing a long pile, and an underlying relatively dense soil 

2 1( )G G , 

assuming that the lower end of the pile is slightly ( )l  buried in the underlying layer of 

dense soil, i.e. l l  (Fig.2.1.) 
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Fig. 2. The design model of the interaction of a long pile 

with the surrounding and underlying soils 

Problem solution 

The pile settlement due to tangential stresses around it can be determined through angular 

deformations by the type dependence 

( )S r dr C           (2.1) 

where C  - integration constant determined from boundary conditions, and 

1( ) ( / )ar a r G   ; 
1/ 2a T al          (2.2) 

Substituting these values into (2.1), we obtain 

1 1

( ) ln( )a aa adr
S r C r C

G r G
    
 

        (2.3) 

while r b , 
1

( ) 0 lnaaS r C b
G

  


, 

And finally 

  
1

( )
( ) lna r b

S r
G r




         (2.4) 

Т Т 

σR 
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While r a  we obtain the maximum value of pile settlement from the action of tangential 

stresses, i.e. we obtain 

1

( ) lnaa b
S a

G a



         (2.5) 

The settlement of the pile at its lower end can be determined in accordance with the known 

formula for determining the precipitation of a round rigid stamp [3,4] 

2 2

2 2

(1 ) (1 )
( ) ( )

4 4

R

R

R a
S K l K l

G a G

 
 

   
       (2.6) 

where ( ) 1K l   - coefficient taking into account the depth of the lower end of the pile. 

Comparing (2.5) and (2.6) we obtain 

1

2

(1 )
( )

4ln( / )

R r

a

G
K l const

G b a


 

 
         (2.7) 

From the equilibrium condition of the pile, it follows that 
2 2 2N R aa a al                  (2.8) 

Substituting the value from (2.7) here, we obtain: 

1 2

2

(1 ) ( )

2ln( / )

R

N n

G K ll

a G b a


 

 
       (2.9) 

And finally 

1/R N A         (2.10) 

where  

1 2

1

2

(1 ) ( )
1

2ln( / )

G K ll
A

a G b a


 

 
      (2.11) 

Substituting the value 
R  from (2.7), we obtain 

  1 2

1 1 1

2

(1 ) ( )
( / ) ( / )

4ln( / )
a N N

G v K l
A B A

G b a


 


        (2.12) 

where 1 2

1

2

(1 ) ( )

4ln( / )

G v K l
B

G b a





. 

The pile draft is determined by (2.5) or (2.6), substituting the expressions 
R from (2.10) or 

a from (2.11) into them. 

3. The interaction of long compressible piles with the 
surrounding and underlying soils 

From consideration of the equilibrium condition of an elementary pile length dz , it follows 

that 

1;
ln( / )

z z

z

d S Gz r

z a dz a a b a

 
   

 

 
        (3.1) 

Considering that ( / )z zE ds dz E   , we obtain 

2

1

2 2

1

ln( / )

z zd d SGds z r

dz E dz E E l adz a
   

 
       (3.2) 

It follows that 
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2
2

2
0

d S
S

dz
            (3.3) 

where 

 2 1

2

2

ln( / )

G

a E b a
          (3.4) 

Solution (3.4) is known [5-7] and has the form: 

1 2( ) sh chS z C z C z            (3.5) 

moreover 

      
1 2/ C sh C chdS dz z z             (3.6) 

It follows from the boundary conditions that 

00z S S    and N

z

ds
z l

dz E
   


        (3.7) 

As with the values 0z   sh0=0, ch0=1, so 
2C S , and 

1 2 1 2

1
ch sh sh

ch

N NC l C l C C l
E E l

 
     

 

 
    

 
      (3.8) 

And finally 

0 0

sh
( ) sh ch

ch

N z
S z S l S z

E l

 
   
 

 
 

 
       (3.9) 

Considering that ( ) ( )zS z f   acc. to (2.5) we can write 

0 0

1

sh
sh ch ( ) ln( / )

ch

N z a
S l S z z b a

E l G

 
   

 

 
  

 
     (3.10) 

It follows that 

3 3( ) sh chz A z B z          (3.11) 

where 

1

3 0sh ;
ln( / )

N G
A S l

E a b a

 
  
 





 0 1

3
ln( / )

S G
B

a b a
     (3.12) 

from (3.10) it follows that 
0( ) SS l  . This corresponds to the conditions of compressibility 

of the pile shaft. We define the unknown 
0S  as follows. 

The total force due to tangential stresses T can be determined by integrating ( )z from 0 to 

l. Then we obtain 

3 3

ch 1 shl l
T A B


 

 

 
      (3.13) 

From the equilibrium condition it follows that 
2 ( )N RT a          (3.14) 

Substituting the value 
3A  and 

3B  from (3.12) into equation (2.13) and equating the 

obtained expression with (3.14) we obtain 

    
20 11

0

ch 1 sh
sh ( )

ln( / ) ln( / )

N

N R

S GG l l
S l a

E a b a a b a

 
    

 

  
   

  
   (3.15) 

Given that 
0S  is determined by (2.6) we obtain: 

2 21 2 1

2

(1 )ch 1
(ch 1 sh )

ln( / ) 4 ln( / )
N R

G a Gl
a l l a

E a b a G b a

   
       

   

 
     

 
   (3.16) 

It follows that 
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/R N D E         (3.17) 

where D  and E  determined by expressions of the form: 

2 22 1 1

2

(1 ) ch 1
(ch 1 sh ) ;

4 ln( / ) ln( / )

a G G l
E l l a D a

G b a E a b a

 
     
  

   
 

  (3.18) 

The expression ( )z can be defined by substituting into (3.11) 
0S with (2.6) taking into 

account (3.12). 

Accordingly, ( )z  can be determined from the resulting expression, based on condition 

(3.12) by integrating of ( )z : 

2
( ) ( )z z dz С

a
         (3.19) 

where C is determined from the condition when z=0→ σ(z=0)=σR, so we obtain 

      
3 3

2
( ) ( sh ch ) Rz A z B t

a
     


     (3.20) 

where 
3A  and 

3B  are still defined by (3.12) in which 
0S is determined by (2.5). 

Finally, to determine the vertical displacement of the pile by z , notably ( )S z , you should 

substitute the values 
1C  and  

2C  from (3.18) in (3.6). 

Thus, the problem is completely solved. 

   
(a) (b) (c) 

Fig. 3. Distribution of vertical displacements ( )S t  (a), vertical stresses ( )z  (b) and tangential 

stresses ( )z  (c) along the pile, calculated according to formulas (3.5), (3.19) and (3.11) 

4. Conclusion 

1. When a long compressible pile interacts with the surrounding and underlying soils under 

the influence of a constant load on the pile top, a difficult and non-uniform mode of 
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deformation arises in them, which can transform in space with a variable load on the pile 

top. 

2. An analysis of the solution of the problem showed a significant effect of the 

compressibility of a long pile on the distribution of force on the pile top between the force 

at the lower end of the pile, the tangential stresses along the side surface of the pile, and the 

stresses in the pile shaft. With increasing pile length, the force at its lower end decreases to 

zero. 

3. To assess the bearing capacity of soils of the lower layer, it is necessary to compare the 

force at the lower end of the pile on the limiting state.  

4. Solving this problem allows finding optimal pile sizes (length, diameter) under given 

geotechnical conditions so as to ensure the transfer of maximum force at the bottom end of 

the pile while ensuring a given degree of approximation to the limiting state. 
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