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Abstract. The article deals with the problem of calculating a stress-strain 

soil massif with a horizontal cylindrical cavity created by an explosion (for 

example, drilling and blasting method of penetration), in the presence of a 

reinforcing ring. The calculation takes into account the radial local 

inhomogeneity of the array near the cavity, due to the explosive effects. 

The problem is solved in a two-dimensional formulation (flat deformed 

state). The solution uses a numerical-analytical method that reduces the 

solution to a system of ordinary differential equations with variable 

coefficients.  

1. Introduction  

In [1], a numerical-analytical method is presented for solving the plane problem of 

elasticity theory in polar coordinates for radially inhomogeneous bodies. This method can 

be used for many practical problems, including the problem considered in this paper. As 

shown in [2, 3], in the rock during an explosion, a change in the modulus of deformation E 

occurs. Depending on the structure of the soil or rock, or compaction occurs [3, 4], which 

leads to an increase in strength and deformation characteristics in the area of the array 

surrounding the hole, or loosening or the formation of fractured rock [5, 6] with a 

corresponding decrease in the listed characteristics in the near zone of the explosion. In 

order to strengthen underground cavities, including those created with the help of an 

explosion, various techniques are used - installation of reinforcing rings made of cast iron, 

concrete or reinforced concrete, freezing of the massif, gunning with concrete, etc. 

In the calculation below, it was assumed that the change in the elastic modulus of a soil 

massif is described by the formula [7, 8]: 
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This function can well approximate experimental curves. By choosing the appropriate 

m , it is possible to describe dependencies with both slow and fast rates of convergence E  

to the value 0E , which corresponds to a larger or smaller zone of the array with modified 
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properties. If 1k  , relation (1) corresponds to compaction of the rock, and at 1k   its 

loosening. 

In fig. 1 shows schematically the dependences of described by this formula for various 

values of the coefficients 2 2andk m . 

 

Fig.1. The change of the elastic modulus in the ground 

The properties of the reinforcing ring, depending on the technology of its manufacture, 

may be different. For example, if the ring is made of a homogeneous material, 

then 1 10Е const Е  . When freezing or gunning occurs, the array is unevenly radially 

reinforced, and in this case, the function can be used to describe the change in the modulus 

of elasticity in the ring: 
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In formulas (1) and (2), the number 1 corresponds to the reinforcing ring, and 2 - to the 

soil massif, the number 0 corresponds to the initial (undisturbed) material of the ring and 

the massif. 

In connection with the absence or insufficient amount of experimental data on changes 

in the Poisson’s ratio   of the reinforcing ring and the array, they were considered constant. 

2. Statement of the problem  

In fig. 2 shows the design scheme of the problem in which a is the radius of the 

cylindrical cavity and the inner radius of the ring, c is the outer radius of the ring, b is the 

radius of the cut out part of the array, H is the depth of the cavity,  is the specific gravity 

of the soil, 2 – Poisson’s ratio of the soil.  

The cavity and ring are stress concentrators. As is well known, in a plane problem in 

polar coordinates, the stresses decrease inversely proportional to the square of the radius, 

which allows you to choose a radius b 5 to 10 times larger than a. Assuming that H >> b, 

then the vertical pressure of the soil at a depth of H - b and H + b can be considered 

approximately the same. In the horizontal direction, the pressure lateral repulse acts.  

The problem is solved in displacements in polar coordinates. We write the basic 

equations: 
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Fig. 2. The design scheme of an array with a cylindrical cavity 

supported by the reinforcing ring 

Hooke's law in the form of Lame 
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Equilibrium equations 
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Substituting (3) into (4), we obtain a system of two partial differential equations [8]: 
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Here ( )r    and ( )r  .  
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3. Method of solution 

To solve equations (5), the method of separation of variables [1, 9] is used, which is the 

development of a generalized solution of the plane problem in polar coordinates of J. H. 

Michell [10, 11] to the case for radially inhomogeneous bodies. If the solution of J. H. 

Michell is constructed for the stress function, then the solution form proposed below is 

written for displacements [1]: 
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where 0,.. .   . cn   depend only on the radius. The upper functions in parentheses 

correspond to the displacements   u , the lower – v , the indices s and c correspond to the 

functions multiplied by the sine and cosine of the angular parameter. 

Substituting (6) into (5) leads to an infinite, partially decomposing system of ordinary 

differential equations with variable coefficients with respect to the 

functions ( ) и (  )  i ir r  . 

The boundary conditions in the problem are written as follows: 
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(7) 

Here it is assumed that on the border of two layers (  r c ) conditions of ideal contact 

are fulfilled. The loads entering the conditions at the boundary  r b can be obtained from 

the vertical ( 0  H ) and horizontal ( 2
0

21
   H





) pressures (see Fig. 2) by changing the 

variables. 

Obviously, in order to satisfy conditions (5) in solutions for both layers (   1,2j  ) in 

general expressions (4), it suffices to confine to terms containing functions
( ) ( )
0 2, 
j j
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and
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s . Substituting these functions in (5) we obtain the following equations: 
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and (10).
 
Equation (6) is reduced to a system of two first order equations, and equations (7) 

and (8) to a system of four first order equations. These systems of equations together with 

the boundary conditions (7) were solved in the complex Maple. 

4. Results and discussion  

As an example in fig. 3 and 4 shows the calculation results obtained with the following 

initial data:   11;b a     1.2;с а   1  0.2;   2 0 5;  .1   
4

10 2.5 10 M a;  PE const    
4

20 2 1 P ;  0 M aE    2  2.m   The parameter 2 k included in (1) varied.  

 

Fig. 3. Stresses 9 )  ( 0   in a inhomogeneous array with fastening ring 

1 – 2  0.2;k   2 - 2  0.5;k  3 - 2  1.k   

The results indicate that with an increase in the degree of heterogeneity (the parameter 

2 k decreases), the stresses in the reinforcing ring increase, which is quite natural if we take 

into accounting the equilibrium condition 

  .

b

a

dr const   

The greatest stresses both in the ring and in the array occur at   90   (see fig. 2). This 

fact is consistent with the solution of the Kirsch problem, since the pressure in the vertical 

direction is greater than in the horizontal. The last fact to pay attention to is to reduce the 

stresses to almost zero at the poles of the hole ( 0, 80  1  ). Calculations show that in 

some cases the stresses at these points can be tensile, which can lead to destruction, for 

example, if the reinforcing ring is made of concrete or the hole is strengthened by 

cementation. 
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Fig. 4. The change of the greatest stress in the ring (a) and in the array 
(b) along the angular coordinate. Designations are the same as in fig. 3 

 
This work was financially supported by the Ministry of Russian Education 7.6163.2017/6.7 

5. Conclusions  

The above solution in the article practically important problem illustrates the method for 

calculating the [1, 9] plane problem in polar coordinates for radially uniform bodies. Just as 

Michell generalized solution allows to obtain virtually any solution for the problem in the 

plane polar coordinates for a homogeneous material, discussed method allows to obtain a 

solution for the problem flat radially heterogeneous solids. As examples of the solutions of 

problems in various fields of technology, has been published in [14 - 19]. 

 
This work was financially supported by the Ministry of Education and Science (state task 

#7.1524.2017/4.6). 
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