
 

Bending by explosion of a multilayered 
concrete beam on a visco-elastic basis 

Yury Nemirovskii1 and Sergey Tikhonov2,* 

1Khristianovich Institute of Theoretical and Applied Mechanics Siberian Branch of the Russian 

Academy of Sciences, Physics of Fast Processes Laboratory, 630090 Institutskaya str., 4/1, 

Novosibirsk, Russia 
2I. Ulianov Chuvash State University, Faculty of Information and Computer Systems, 428015 

Moskovskiy pr., 14, Cheboksary, Russia 

Abstract. In this work, the problem of bending of a multilayered concrete 

beam of arbitrary cross-section by explosive loading on a visco-elastic 

basis is considered. It is assumed that different grades of concrete can be 

realized in layers in the cross-section. The property of concrete resistance 

to tension and compression is considered in work. It is assumed that the 

dynamic loading is caused by consecutive explosion of two charges over 

the middle of the span of beam. The distribution of bending moments and 

deflections of the beam at each time is determined.  The time of the end of 

motion and the residual deflection of beam are found. 

1. Introduction 

The beginning of the research of reinforced concrete structures was laid by A. A. Gvozdev 

[1] who introduced a widely known model of ideal rigid-plastic material into calculation 

practice and carried out many calculations of the bearing capacity of various building 

structures on its basis. The model turned out to be quite simple and convenient in design 

engineering practice and was widely developed [2-6]. It should be noted, however, that 

even though in the mentioned works it is often noted that the calculations were carried out 

including the building structures made of reinforced concrete, the specific property of 

concrete and reinforced concrete structures that is associated with their significant 

resistance to tension and compression was not taken into account when carrying out 

specific calculations within the framework of that model [7-9]. 

In scientific literature, the calculation of reinforced concrete structures is often limited 

to the case of the simplest forms of rod cross-sections and the simplest conditions of 

loading and fastening. Modern technological means of creating flexible sets of hybrid 

laminated structures, where in cross-section different grades of concrete can be realized in 

layers, are not considered.  

In construction practice, there are often situations when deformation is accompanied by 

a repulse of environment [10] and there is a problem of estimating the bearing capacity of a 

structure and reducing its damage level in the presence of such repulse under the influence 
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of dynamic loads. A similar problem of dynamic loading of a multilayered pinched beam 

on a viscoelastic basis was considered in [11-12]. 

Materials included in the real construction in the field of plastic deformations can have 

completely different dependences. An analysis of possible general relations for the 

description of the stress-strain state of structures made of hybrid reinforced concrete is 

given in [13]. 

2. Methods  

Creating of a calculation method with a search of all known dependencies is completely 

unreal and impractical. Therefore, we previously introduce and use further some useful 

concepts to develop a uniform method of calculation. First, plastically equivalent materials 

[14]. 

 
Fig. 1. Cross-section of a three-layered concrete beam 

Suppose that considered as a part of a layered beam (fig. 1) i–material in plastic area of 

deformation is described by the dependence 
2

1 2 * *,i i i i iA A           ,       (1) 

where  
* *,i i    are maximum allowable strains at compression and tension respectively,  

1 2,i iA A  are experimentally determined coefficients. 

Assume that the coefficients 
1 2,i iA A  are determined from experiments performed for 

samples of the corresponding phase materials, for example, by the method of least squares. 

For this purpose, it is necessary to have real diagrams of tension-compression. As the 

published data of specific tests are usually not sufficiently complete, the following 

simplified method of calculation can be used to determine the parameters. 

We assume that the modulus of concrete elasticity 
iE  under compression and tension is 

identical. We assume that concrete behaves like an elastic body in the segment 
*0 i    , 

to determine 
*i  , from where we can obtain 

 *

*

i

i

iE






  ,                                                          (2) 

where 
*i   is a limit of tensile strength. 

From the ratio (1), we can obtain 
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2

1 2 22
2 , 2 .i i

i i i

d d
A A A

d d

 


 
                                           (3) 

From ratios (3), considering that approximating curve described by equation (1) has a 

convexity down, we have 
2 0iA  . Passing to the limit in the first equation of ratios (3), we 

get  

1
0

lim ,i

i

d
A

d




  

where it follows that 

  
1 ,i iA E                                                             (4) 

where 
iE  is a modulus of concrete elasticity. 

Considering that the point  * *,i i     in the equation (1) must be an extremum point 

where 
*i   is a limit strength at compression, we obtain  

 
2

* 1 * 2 * 2 *, 2 0i

i i i i i i i i

d
A A E A

d


   



        ,                         (5) 

therefore 

 
2

*

* 2

*

1
2 ,

4

ii

i i

i i

E
A

E











  .                                             (6) 

Thus, it is sufficient to have three traditional characteristics 
iE , 

*i  , 
*i   when using 

the approximation (1). 

We consider ideally plastic materials with yield limits respectively 
0 0,i i    on the 

deformation segments 
*0 i    , 

* 0i     on the deformation segments. along with 

approximating ratio (1). Consider these materials plastically equivalent [12] if they perform 

the identical work on deformation 

   
* *

* *

0 0

2 2

0 1 2 0 1 2

0 0

,
i i

i i

i i i i i id A A d d A A d

 

 

         

 

 

 

 

         , 

where we get 

   
2 2

2 * 2 *1 * 1 *

0 0,
3 2 2 3

i i i ii i i i

i i

A AA A  
 

  

     .                             (7) 

Substituting in expressions (7) the values of coefficients obtained in the ratios (2), (4), 

(6), we get 

 
2

* * * *

0 * 0 * *

*

2
, , 2 ,

3 212

i i i i

i i i i i

i ii
E E

   
    



   

    


     .                        (8) 

Substitute all layers 
iS  in fig. 1 for plastically equivalent ideal materials. Then the 

expression for the force N and the bending moment M has the form   
31 1 2

1 1 2

01 1 02 2 02 2 03 3

0

2 ( ) 2 ( ) 2 ( ) 2 ( )

hh z h

h z h

N b z dz b z dz b z dz b z dz                        (9) 

 1 02 02 2 1( )F z      , 

31 1 2

1 1 2

01 1 02 2 02 2 03 3

0

2 ( ) 2 ( ) 2 ( ) 2 ( )

hh z h

h z h

M b z zdz b z zdz b z zdz b z zdz                  (10) 
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 2 02 02 2 1( )F z      , 

where 

     1 01 1 1 1 02 2 1 02 2 2 03 3 3 3 2( ) (0) ( ) ( ) ( ) ( ) ,F h h h h h                   

     2 01 1 1 1 02 2 1 02 2 2 03 3 3 3 2( ) (0) ( ) ( ) ( ) ( ) ,F h h h h h                   

( ) 2 ( ) , ( ) 2 ( ) , ( 1, 2, 3)i i i iz b z dz z b z zdz i     . 

According to Kirchhoff-Lyav's hypothesis, we have in examined case 

0

1 1 2 ,h z h



      

0 0, 0   . 

Assuming 0N   in equation (9), we obtain an expression for 
1z  

1 1

1 2

02 02

F
z 

 



 

 
  

 
, 

where 1

2
  is an inverse function to 

2 . 

Substituting the value found in (4), we obtain the value of limit bending moment 

  1 1

0 2 02 02 2 2

02 02

F
M F    

 

   

 

  
        

.                         (11) 

3. Results 

Consider the case when the beam is hinged. Two states rigid 
10 ( )x x t   and plastic 

1( )
2

a
x t x   can be realized in the beam (fig. 2). 

 
Fig. 2.  The scheme of beam deformation 

Consider that the load at explosion of the first charge can be represented in the form  

0( , ) ( ) it

i iq x t f x e


 ,                                              (12) 

where  0 0( ) ( )i i if x q p x , 
0 ,i iq   are charge parameters, 

1( )p x  is a distribution function of 

the blast wave, depending on the location of charge, which we take in the form [15] 
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1
1 2 2

1 2

0 0 0 0 0 0

0

( )
2

i

i

i

a
a

a

i i i i i i i

i

r a
f x q b q b R H x

R

 
 


    

            

 ,             (13) 

where 
01 01 1, ,b R a  are parameters determined from the experiment. 

Then the equation of dynamic bending has the form  
2 2

1 1 22 2
( , ) 0s

M w w
q x t q m k k w

tx t

  
     

 
,                     (14) 

where m is a distributed mass of the beam, w is a deflection,  
sq  is a distributed weight of 

the beam, 
1 2,k k  are coefficients of viscous and elastic resistance of the basis.  

For rigid segment the curvature 
2

2

( , )
( ) 0

w x t
x

x



  


, then from the condition of 

fixing the left end of the beam 

 (0, ) 0, (0, ) 0w t M t  ,                                               (15) 

and condition at the border of two areas 

1( ( ), ) 0Q x t t  ,                                                        (16) 

get expressions for the deflection and the moment in section 
10 ( )x x t   

1( , ) ( ) ,w x t t x                                                      (17) 

 
1

2 23

1 1 1

1 1 2 12

0 ( )

( ) ( ) ( )
( , ) ( , ) ( ) ,

6 2

x x

s

x t

t t x tx
M x t q x t q dx dx m k k t x

tt

 


     
               
   (18) 

and 
0( , )M x t M   should be fair everywhere the site 

10 ( )x x t  . 

In plastic area, the moment has reached its limit value 

0 1( , ) , ,
2

a
M x t M x x                                                (19) 

then for the specified section we obtain the differential equation for determining the 

deflection in plastic region 

 1

2

1 2

01 12
( )

tk kw w
w f x e f

т t mt

 
   


 ,                                    (20) 

where 

1

sq
f

m
 .                                                              (21) 

Equation (20) is a second-order linear inhomogeneous differential equation with 

constant coefficients. 
Initial conditions of the equation (20) is 

0
0

( , )
( , ) 0





 

t
t

w x t
w x t

t
.                                        (22) 

Depending on the discriminant of characteristic equation (19) 
2

1 2

2
4

k k
d

mm
  , three 

cases are possible when solving the equation (19). 

Consider the first case, which takes place if 0d  . The remaining two cases are 

considered similarly. 

Then the general solution of equation (20) has the form 

  

1

32 01 1

1 2

2 1 3 1 2 3

( )
( , ) ( ) ( ) ,

t

f tf t f x e f
w x t C x e C x e

f f f f



 



   
 

                (23)  
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for the deflection speed it is true  

  

1

32 01 1

2 1 3 2

2 1 3 1

( )( , )
( ) ( ) .



 




  
  

t

f tf t f x ew x t
f C x e f C x e

t f f
 

The solution with the boundary condition (20) has the form 

    32 1

4 01 5 6 01 7 8 01 9( , ) ( ) ( ) ( ) ,
f tf t t

w x t f f x f e f f x f e f f x e f


               (24) 

where 

         
1 1

4 5 6 7

2 1 2 3 2 2 3 3 1 3 2 3 2 3

1 1
, , ,

f f
f f f f

f f f f f f f f f f f f 
   

     
, 

  
1

8 9

2 1 3 1 2 3

1
, .

f
f f

f f f f 
 

 
 

We rewrite equation (24) as 

 3 32 1 2

01 4 6 8 5 7 9( , ) ( ) .
f t f tf t t f t

w x t f x f e f e f e f e f e f


                  (25) 

From (25) we can obtain the expression for the speed of deflection  

 3 32 1 2

01 4 2 6 3 1 8 5 2 7 3

( , )
( ) .

 
    



f t f tf t t f tw x t
f x f f e f f e f e f f e f f e

t
      (26) 

At the boundary of rigid and plastic states, the conditions of deflection continuity 

should be true  

1 ( )
[ ( , )] 0,

x x t
w x t


                                    (27) 

where the symbol [ ... ] denotes the jump of the considered quantity. 

From (17), (25), (27) we obtain the expression for the deflection for a rigid section 

  3 32 1 2

01 1 4 6 8 5 7 9

1

( , ) ( ( )) .
( )

f t f tf t t f t x
w x t f x t f e f e f e f e f e f

x t


               (28) 

The continuity condition of the deflection speed at the boundary of two regions has the 

form 

1 ( )

( , )
[ ] 0.






 x x t

w x t

x
                                             (29) 

From (25), (28), (29) you can obtain an equation to determine the boundary 
1( )x t  

32

32 11

5 7 9

1 01 01 1( )

4 6 8

( ) ( ) ( ( ))
f tf t

f tf t tx x t

f e f e f
x t f x f x t

f e f e f e


 
  

 
,                     (30) 

where the function 01( )f x  has the form (13). 

The first limit load can be found from the expression 1( )x t  found in (30) by putting 

1(0)
2

a
x  . 

From equation (26) we can find the time of stop of the structure motion ft   

 2 3 1 2 3

01 1 4 2 6 3 1 8 5 2 7 3( ( )) 0f f f f ff t f t t f t f t

ff x t f f e f f e f e f f e f f e





     .       (31) 

The residual deflection is determined from equation (28) at ft t , for a rigid section if 

10 ( )fx x t    

  2 3 1 2 3

01 1 4 6 8 5 7 9

1

( , ) ( ( )) ,
( )

f f f f ff t f t t f t f t

f f

f

x
w x t f x t f e f e f e f e f e f

x t


       
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and plastic area if 
1( )

2
f

a
x t x   from equation (25)  

 2 3 1 2 3

01 4 6 8 5 7 9( , ) ( ) .f f f f ff t f t t f t f t
w x t f x f e f e f e f e f e f


       

In the case of the second charge, at the time 
1t t  when the beam movement has not 

stopped 
1 ft t , the load caused by the action of two charges takes the form 

1 2

01 02( , ) ( ) ( )
t t

q x t f x e f x e
  

  ,                                       (32) 

then the equation for determining the deflection in the plastic area takes the form  

  1 2

2

1 2

01 02 12
( ) ( )

t tk kw w
w f x e f x e f

т t mt

   
    


,                         (33) 

solution (33) has the form 

     

1 2

32 01 02 1

3 4

2 1 3 1 2 2 3 2 2 3

( ) ( )
( , ) ( ) ( ) ,

t t

f tf t f x e f x e f
w x t C x e C x e

f f f f f f

 

   

 

    
   

 

under initial conditions 

1

1

01 02

( , )
( , ) ( ), ( ),





 

t t
t t

w x t
w x t w x w x

t
                           (34) 

where 

01 10 01 11 02 12 01 13( ) ( ) , ( ) ( ) ,w x f f x f w x f f x f     

3 1 3 12 1 1 1 2 1

10 4 6 8 11 5 7 9, ,
f t f tf t t f t

f f e f e f e f f e f e f


     

3 1 3 12 1 1 1 2 1

12 4 2 6 3 1 8 13 5 2 7 3, ,
f t f tf t t f t

f f f e f f e f e f f f e f f e
 

      

the solution takes the form  

    32

1 2

14 01 15 02 16 17 01 18 02 19

20 01 21 02 22

( , ) ( ) ( ) ( ) ( )

( ) ( ) ,

f tf t

t t

w x t f f x f f x f e f f x f f x f e

f e f x f e f x f
  

      

  
 

where 
2 11 2 1 2 2 1( ) ( )

12 3 10

14 15

2 1 2 3 2 3 2 2 2 3

( )
, ,

( )( ) ( )( )

f tf t f te f f fe e
f f

f f f f f f f f

 

 

   
  

    
 

2 12 1

13 3 111

16

2 2 3 2 3

( )

( )

f tf t e f f ff e
f

f f f f f

 
 

 
, 

3 11 3 1( )

12 2 10

17

3 1 3 2 3 2

( )
,

( )( )

f tf t e f f fe
f

f f f f f





  
 

  
 

2 3 1( )

18

3 2 3 2

,
( )( )

f t
e

f
f f f





 


 

3 13 1

13 2 111

19

3 3 2 3 2

( )

( )

f tf t
e f f ff e

f
f f f f f




 
 

, 

     
1

20 21 22

2 1 3 1 2 2 3 2 2 3

1 1
, , .

f
f f f

f f f f f f   
  

   
 

The obtained solution we rewrite as  

   3 32 1 2 1

32

01 14 17 20 02 15 18 21

16 19 22

( , ) ( ) ( )

.

f t f tf t t f t t

f tf t

w x t f x f e f e f e f x f e f e f e

f e f e f

  
      

  
   (35) 

From (17), (27), (35) it is possible to obtain a solution in a rigid part  

 

   

32 1

3 32 1 2

01 2 14 17 20

02 2 15 18 21 16 19 22

2

( , ) ( ( ))

( ( )) .
( )

f tf t t

f t f tf t t f t

w x t f x t f e f e f e

x
f x t f e f e f e f e f e f

x t









   

     
       (36) 
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The equation for determining the boundary between two regions can be obtained 

according to (29), (35), (36) 

  

    

32 1

2

3 32 1 2

2

01 2 2 01 14 17 20( )

02 2 2 02 15 18 21 16 19 22( )

( ( )) ( ) ( )

( ( )) ( ) ( ) 0.

f tf t t

x x t

f t f tf t t f t

x x t

f x t x t f x f e f e f e

f x t x t f x f e f e f e f e f e f













   

       
 

The stopping time of structure motion 
2f

t  after the second explosion can be determined 

from the equation  

 

 

2 3 12 2 2

2

2 3 1 2 32 2 2 2 2

2

01 2 14 2 17 3 1 20

02 2 15 2 18 3 1 21 16 2 19 3

( ( ))

( ( )) 0.

f f f

f f f f f

f t f t t

f

f t f t t f t f t

f

f x t f f e f f e f e

f x t f f e f f e f e f f e f f e













  

     
 

The residual deflection of structure after motion stop  will take the form:  

for 
20 ( )fx x t   

   2 3 1 2 3 12 2 2 2 2 2

2 32 2

2 01 14 17 20 02 15 18 21

16 19 22

( ) ( ) ( )

,

f f f f f f

f f

f t f t t f t f t t

f

f t f t

w x f x f e f e f e f x f e f e f e

f e f e f

  
      

  

    

for 2 ( )
2

f

a
x t x   

 

   

2 3 12 2 2

2

2 3 1 2 32 2 2 2 2

2

2

2 01 2 14 17 20

02 2 15 18 21 16 19 22

2

( ) ( ( ))

( ( )) .
( )

f f f

f f f f f

f t f t t

f f

f t f t t f t f t

f

f

w x f x t f e f e f e

x
f x t f e f e f e f e f e f

x t









   

     
 

The value of the bending moment in the rigid part of the beam can be determined from 

the equations (17), (18), (28), (36). The moment should not exceed the limit value 

0( , )M x t M   in this part .  

4. Discussion 

The approach used in this work allows to consider sections consisting of three layers as 

well as more. An increase of the number of layers does not introduce any serious 

complications in the calculation and does not change the algorithm for solving the problem. 

The considered approach can also be used in the case when each concrete layer is 

reinforced with high-modulus and high-strength fibers of metal, polymer or stone origin (at 

creating poly-reinforced structures), as well as using rubber-concrete and polymer concrete.  

5. Conclusions 

The problem of bending of a multilayered concrete beam of arbitrary cross section by 

explosive load on a visco-elastic basis has been set and solved under the assumption that in 

the section different grades of concrete can be realized in layers. The distribution of 

bending moments and deflections of the beam at each time is determined.  The time of the 

end of motion and the residual deflection of beam are found. 

This work is carried out with the partial financial support of RFBR grants (projects 19-01-00038, 17-

41-210272). 
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