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Abstract. Reviewing the numerical simulation of the process of non-

proportional elastic-plastic deformation of steel 45 by a knot of constant 

curvature, taking into account the complex nature of deformation under 

complex subcritical loading by axial compressive force and torque for a 

thin-walled circular cylindrical shell. The theory of Quas and simple 

processes of A. A. Ilyushin and the mathematical model of V. 

Zubchaninov were applied taking into consider the parameters of the 

complex loading for plane trajectories To assess the accuracy of accepted 

theories, the simulation results are compared with experimental results, 

received on the automated complex СN- computer in the laboratory of the 

faculty of «Strength of materials and theory of elasticity and plasticity» of 

the Tver state technical University. Was introduced the scheme of 

calculations disproportionate plastic deformation of steel 45 using the 

proposed mathematical model showed a satisfactory result and 

recommended for further use. Remarks, that in the described processes the 

lack of some parameters complex loading in approximations reduces the 

accuracy of the final calculated values, differences significantly compared 

to the experimental data. 

1. Introduction  

The fundamental system-forming of the theory of processes elastic-plastic deformation of 

materials and basic equations are accepted by formulas [1-8, 10, 11]: 
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 - modules of ball tensors and deviator tensors respectively (first and second invariants); 
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- the components of the diverters and their guide’s tensors; 
ij - the symbol of Kronecker.  
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With proportional (simple) loading of guide tensors stresses and strains matches, that 

   * *

ij ijS Э , and taking into account the elasticity of the volumetrically deformation have 

a place the relation of the theory of small elastic-plastic deformations of Ilyushin (4) 

   0 03 , 2 , ( , 1,2,3)ij ij p ijК S Э G Э Э i j
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here К - elastic modulus of bulk deformation; 2 pG  - doubled plastic shear modulus; 

 Э    - the basic function of a unified deformation diagram of materials Roche's and 

Eichinger's, which for an arbitrary stress-strain state determines only the scalar properties 

of the material. 

At disproportionate (complex) loading the guiding tensors of stresses and deformation, 

and also their speeds are not equal, so    * *

ij ijS Э ,    * *

ij ijS Э . In this case, the 

calculation in the defining relations (1) only scalar properties of materials is not enough. 

Ilyushin proposed [1, 2] a vector representation of deformations and stresses in a linear 

coordinate six-dimensional euclidean space with an orthonormal fixed basis ˆ
ki , where 

k=0,1,2,5. In this space stress and strain tensors are aligned with stress vectors S  and strain 
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, (k=1, 2,…,5),                         (5) 

where 
0

S , 
0

  - stress and strain vectors of volumetric tension-compression in one-

dimensional space;  , Э  - the vectors of stress and strain forming in five-dimensional 

deviatory space 
5E . Vector coordinates are associated with components of tensors and 

deviators by one-to-one transformations [1-3] 
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and the modules of the vectors   and Э  relatively equal  

, .ij ij k k ij ij k kS S S S Э Э Э Э Э                                 (7) 

In space 
5E  the end of the vector of deformations ˆЭ ЭЭ describes the deformation 

path  Э s  with the length of the arc s, which displays in this space the process of 

deformation of the material during its forming. At each point of this trajectory  Э s  built 

natural generalized orthonormal riper Fresnes-Ilyushin { ˆ
kp }, k=1,2,…,5, and also the 

stress vector ˆ   and its incrementd d ds , where Э̂  and ̂  - unit strain and stress 

vectors, subsequently. The aggregate of the trajectory deformation  Э s and the vectors 

 , d ds  constructed at each of its points along with the corresponding temperature  , 

by the module of 
0  and nonthermomechanical parameters   form a geometric image of 

the physical process of deformation and deviator space 
5E . It is obvious that the direction 

and length of vectors   and Э , it is obvious that the direction and length of vectors, will 
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depend on invariants of tensors, parameters of curvature and torsion of the trajectory 
mk  

(m=1,2,3,4), temperatures Т and parameters  . 

Based on the particular postulate of isotropy A. A. Ilyushin [1], V. G. Zubchaninov 

received [3] defining relations between stress and strain vectors in 
5E , the local form of 

which for threedimensional problems has the form 
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unit stress vector; 
1 2,   - angles of approach and deplanation, which are the polar 

spherical coordinates of the vector   in the movable frame Fresnes { ˆ
kp },(k=1,2,3), for 

which 
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1M ,
3M , d ds -functional deformation process, dependent from the parameters of the 

complexity of the process: s - arc lengths of the deformationpath, angles of its fracture 
0

1  

and curvature parameters 
1k  and torsion 

2k . 

To determine angles 
1  and 

2  we need to use differential nonlinear equations [3] 
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In the case of flat trajectories at 
2 20, 0k    from (8), (12) we get  

1 1
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Angle of approach 1 , which characterizes the deviation of the stress vector   from the 

tangent to the trajectory of the deformation at each point is a functional of the parameters of 

the complexity of the process 
0

1 1 1 1( , , )s k   . This angle reflects the effect of the vector 

properties of the material on the deformation process, а 
0

1 1( , , )s k   , being a functional 

of the same parameters - the influence of scalar properties of the material.  

In simple cases of complex loading, close to simple, mean that, when the deformation 

trajectories are close to the linear proportional loading, for example, the trajectories of 

small curvature, the approximate law of Odqvist-Ilyushin can be used  

( )Ф s                                                               (14) 

To smellier to the universal law of the Rosh, and Eichinger ( )Ф Э   in case of simple 

loading. In (14) always s Э  and in an obvious form does not take into account the history 

of complex loading, what mean that we take in account, that it has little effect on the 

processes of complex loading. Such neglect of parameters 1k
 
and 

0

1  in the interrelation 
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(14) in practical calculations, it can lead to unreliable results, especially for the trajectories 

of medium and large curvature, as well as trajectories with large angles of fracture 
0

1 90   . Therefore, the creation of new mathematical models, describing inelastic 

deformation of materials and construction on their basis of more accurate approximations 

of functional, taking into account all the parameters of the complexity of the process, is an 

important task of the theory of plasticity.  

2. Mathematical model of the theory of processes in flat tasks. 

The main equations of the mathematical model of the theory of processes in flat tasks are 

the defining relations (13) and universal approximations of functional V. G. Zubchaninov 

[3, 9] 
0

1 1 0 1( , , ) ( ) ( )ps k Ф s Af s B sk         ,                              (15) 
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                                  (16) 

where 
T

Ks s s    - the increment of the arc of the trajectory deformation; 
T

Ks - the length 

of the arc at the point of its fracture; G, pG - elastic and plastic shear modulus for initial 

isotropic material; - 
0

pG value pG  at the culminating point of;  

 ( ) (1 ) ,s ss se b e                                                (17) 

- function describing the «dive» of the module of the vector of the generalized stresses and 

the effect of baushinger at the complex unloading and subsequent plastic deformation; 

   
0

01 1

1 0 1

1 cos 1 cos
,

2 2
f f f f

 
 

 
                                  (18)  

- function of complex loading, that taking into account the orientation of the stress vector in 

the deformation process and its value at the break point of the trajectory; , , , , ,A B b p q - 

material parameters for each construction material, experimentally determined from basic 

experiments. Generalized to complex loading, the effect of baushinger regarded as a 

manifestation of General properties of delay scalar properties of materials [3]. 

Under given initial conditions with specified functional (15)-(16), constitutive relation 

(13) leads to Cauchy problem, which was solved using the fourth-order numerical Runge-

Kutta method, The solutions obtained by comparing the calculated and experimental data 

allow the verification of different versions of the model, including when some parameters 

of the complexity of the process are not taken into account in the approximation of the 

functionals. 

3. Results of the performed experiments and numerical 
simulation 

The experimental results were obtained on the automated complex SN-computer in the 

laboratory of the faculty of  «strength of materials, theory of elasticity and plasticity» Tver 

state technical University [4]. The experiments were carried out on thin-walled circular 

cylindrical shells made of steel 45. The studies were carried out at elastic-plastic 

deformation (hard loading) thin-walled tubular sample along a flat trajectory, containing 

two straight sections and a section of a circle of constant curvature.  
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Tubular samples made of steel 45 with mechanical characteristics 2,05Е   MPa, 

0,3  , 0,788G   MPa, wall thickness 1h  mm, radius of the middle surface 

15,5r  mm, the length of the working part 110l  mm, shown in figure 1.  

 

 

Fig. 1. Examination sample 

To check the initial isotropy of the material, a comparison of deformation diagrams is 

performed  Э   simple loading processes for tensile specimens, torsion and internal 

pressure, which are shown in the figure 2. 

 

 

Fig. 2. Diagrams of material deformation under simple loading processes 

Comparison of deformation diagrams allowed us to conclude that, the material of 

specimens is conventionally isotropic, as in the developed plastic deformation ranges of 

values of the module of the vector of stresses does not exceed 10%. 

Test programs of complex loading under normal temperature conditions under 

disproportionate influence of axial force and torque were carried out at a constant speed 
610   sec

-1
 in a plane 1 3Э Э  deviator space of deformations 5Е . In a series of tests 
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carried out, there are multiple trajectories of deformation with sections of different constant 

curvature 1к const  [12, 13]. One of these three-link trajectories is shown in the figure 3.  

 

Fig. 3.  Stress-strain diagram of the material under complex loading processes 

On the first straight section torsion to the value was realized 3 0,75%Э  . In point X 

the second section begins, where the angle fracture is 
0

1 90    and carried out one round 

of non-proportional tension with torsion of the shell in the form of the circumferential path 

of radius 0,75%R Э   and curvature 1 100к  . At the point Y originates the third 

section, where the stretching to the loss of stability while maintaining a constant level of 

tensional deformation 1Э  on the last link.  

Figure 4 shows the response to the implemented deformation trajectory in the plane 

deviator stress space  

 

Fig. 4. Response to the realized deformation trajectory in the plane 1 3S S  
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Figure 5 shows the diagram s  , characterizing the scalar properties of the material  

 

Fig. 5.  Scalar material properties 

Figure 6 shows the 
1 s   diagram describing the vector properties of the material 

 

Fig. 6. Vector material properties 

Figure 7 shows the local deformation diagram of the material tension-compression 

1 1S Э  

 

Fig. 7. Strain diagram of tension-compression of material 1 1S Э  

Figure 8 shows the local diagram of torsion deformation of the material 3 3S Э  

7

E3S Web of Conferences 97, 04025 (2019) https://doi.org/10.1051/e3sconf/20199704025
FORM-2019



 

Fig. 8. Diagram of deformation of torsion of the material 3 3S Э  

In figure 2 - 7 experimental points are marked with circles, solid lines are marked with 

curves, which were built according to the considered mathematical model of the theory of 

processes in flat tasks, taking into account the approximation of the process functional (15) 

all the parameters of the complexity of the process 
0

1 1, ,s к   for flat trajectories and a 

generalized effect of baushinger. As you can see, numerical calculations on the presented 

mathematical model of the theory of processes using functional approximations (15) and 

(16) quite well correspond to the experimental data for this type of trajectory from scalar 

data. 

References 

1. A.A. Ilyushin, Plasticity. Bases of the General Mathematical Theory, Moscow: 

Izdatelstvo AS USSR, 271 p. (1963) 

2. A.A. Ilyushin, Continuum Mechanics, Moscow: Izdatelstvo MSU, 310 p. (1990) 

3. V.G. Zubchaninov, Mechanics of processes in plastic environments, Moscow: 

Fizmatlit, 352 p. (2010) 

4. A.A. Ilyushin, Plasticity. Elastic-plastic deformation, Moscow: Gostekhizdat, 376 p. 

(1948) 

5. V.G. Zubchaninov, A.A. Alekseev, V.I. Gultyaev, Modeling, Problems of strength and 

plasticity, Vol. 77, 2, pp. 113-123 (2015) 

6. V.G. Zubchaninov, A.A. Alekseev, V.I. Gultyaev, Problems of strength and plasticity, 

Vol. 76, 1, pp. 18-25 (2017) 

7. V.G. Zubchaninov, A.A. Alekseev, E.G. Alekseeva, Materials Physics and Mechanics 

(MPM), Vol. 24, 2, pp. 107-118 (2015) 

8. V.G. Zubchaninov, Mechanics of Solids, vol. 46, 1, pp. 21-29 (2011) 

9. R.A. Vasin, Mechanics of Solids, vol. 46, 1, pp. 15-20 (2011) 

10. V.G. Zubchaninov, Problems of mechanics: the collection of scientific papers, 

Moscow: Fizmatlit, pp. 394-405 (2003) 

11. V.G. Zubchaninov, A.A. Alekseev, V.I. Gultyaev, PNRPU Mechanics Bulletin, 1, pp. 

94-105 (2013) 

12. V.A. Golenkov, V.G.Malinin, N.A. Malinina, Structural-analytical mesomechanics 

and its applications, Moscow: Mashinostroenie, 634 p. (2009) 

13. I.A Volkov, Iu.G Korotkikh, Equation of state viscoelastoplastic environments with 

damages, Moscow: Fizmatlit, 424 p. (2008). 

8

E3S Web of Conferences 97, 04025 (2019) https://doi.org/10.1051/e3sconf/20199704025
FORM-2019


