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Abstract. An assessment of the dynamic behavior of a plane earth 

structure with account of its foundation is considered in the paper. A 

structure with a foundation is considered as an inhomogeneous system, the 

material of its certain parts is considered elastic or viscoelastic. To assess 

the effect of the foundation on dynamic behavior of the structure, a finite 

domain is cut from the foundation and conditions are set at the boundary of 

this domain that provide energy entrainment from the structure to infinity 

in the form of the Rayleigh wave. To describe the internal dissipation in 

material, a linearly hereditary theory of viscoelasticity with the Rzhanitsin 

kernel is used. A mathematical model, method and algorithm have been 

developed to assess the dynamic behavior of the structure-finite foundation 

system. To ensure the adequacy of the mathematical model and to assess 

the accuracy of the calculation, model problems have been solved when 

describing the process under consideration. Dynamic behavior of 

inhomogeneous viscoelastic system of earth dam-foundation with non-

reflecting boundary conditions on the boundary of the final domain of the 

foundation is investigated. In the process of studying the dynamic behavior 

of inhomogeneous viscoelastic “structure-foundation” systems, a number 

of mechanical effects.  

1. Introduction  

When assessing the dynamics of a structure, the effect of earth foundation on the dynamic 

behaviour of a structure is often not taken into account, despite the fact that the effect of the 

foundation may in some cases be significant. Usually, when taking into account the 

structure-foundation interaction, the Winkler foundation model is used, which, despite its 

simplicity in calculation, does not take into account a number of physical effects associated 

with the inertia properties of earth foundation. The elastic half-space model is devoid of this 

disadvantage; however, due to mathematical complexity, it does not allow to obtain an 

analytical solution in a closed form, with the exception of a number of particular static 

problems. 

Recently, the final model of the foundation, cut out from the half-space, is widely used 

to account for the joint operation of a structure-foundation system. When using a finite 
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foundation model, there appear some parasitic eigenfrequencies of the “structure-final 

foundation” system, which under forced oscillations can lead to parasitic resonance 

phenomena. To eliminate this, it is necessary to set artificial boundary conditions at the 

boundary of the final domain, excluding the occurrence of parasitic resonances. To ensure 

this, on the border of the final domain of the foundation, the conditions are set that ensure 

energy entrainment from the structure to infinity, i.e. wave entrainment of energy. Many 

existing models of the “structure-finite foundation” system do not allow one to adequately 

describe the dynamic process of energy entrainment to infinity. 

To reliably assess the dynamic behavior of the “structure-foundation” system, it is 

necessary, along with taking into account the wave entrainment of energy, to account the 

inhomogeneous features of the structure and dissipative (viscoelastic) properties (an 

internal dissipation) both in structure material and at the foundation; this also complicates 

the solution of dynamic problems for structure-foundation system. 

For an equivalent replacement of an infinite foundation by a finite one considering the 

above factors, it is necessary to use non-reflecting boundary conditions on fictitious 

(artificial) boundaries of the computational finite domain [1, 2]. 

There are numerous published papers [3–10], which propose the use of non-reflecting 

conditions at the boundary of the finite domain of the foundation, which provide energy 

entrainment from the structure to infinity [3–10]; a detailed review of other papers related 

to this problem is given in [11-13]. 

Here are listed just some of the papers devoted to the problem of studying the dynamic 

behavior of the “structure-foundation” systems with the use of artificial non-reflecting 

conditions at the boundary of the finite domain of the foundation that provide energy 

entrainment. 

Fundamental studies [11, 12] are devoted to the problem of statement of exact boundary 

conditions on the artificial boundaries of the computational domain, mathematical 

justification, analysis and their effectiveness in solving specific problems; a lot of published 

papers are analyzed there which use artificial boundary conditions; the results are obtained. 

 Hence, it follows that the problem of estimating the dynamic behavior of 

inhomogeneous viscoelastic systems “structure-foundation-base”, with account of internal 

dissipation and wave entrainment of energy across the boundaries of the finite earth 

foundation, is far from the final solution and is an urgent problem that needs to be solved.  

2. Method  

A plane inhomogeneous system (structure + foundation + base) is considered here, 

consisting of a deformable body occupying a volume V=V1+V2+V3+V4 and a deformable 

half-space (figure 1). The material of a deformable inhomogeneous body and a half-space 

is, in general case, viscoelastic one, and physical properties of their components differ from 

each other.  

At the interfaces of the elements of the system, the displacement and stress components, 

normal and tangent to the interface, are continuous. The structure under consideration is a 

massive structure; therefore, the mass forces f


 are taken into account as well as various 

force effects applied to an arbitrary surface p. 

The task is to determine dynamic characteristics, displacements and stresses in an 

inhomogeneous system (figure 1) under dynamic effect. 

The considered problems are set for a finite domain (figure 1) of a volume V+V5  (V5 is 

the volume cut out from the half-space) and bounded surfaces 
  211  on which 

non-reflecting conditions are set. 
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Fig. 1.  Calculation model of inhomogeneous system. 

To describe the dynamic processes occurring in the system (figure 1), the principle of 

possible displacements is used, according to which the sum of the work of all active forces, 

including inertial forces, on virtual displacements is zero: 
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Further: 

- to describe the internal dissipation in material of both structure and foundation, a 

linear hereditary theory of viscoelasticity is used which connects the components of the 

stress tensor with the strain tensor [14] 
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- with the Rzhanitsin’s kernel [15]  
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т  10  ,          (3) 

- Cauchy relations are used, connecting the components of the strain tensor ij with the 

components of the displacements vector u

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- and non-reflecting conditions at the boundary of the finite domain of the foundation 

[1, 2, 11, 13] are 

3

E3S Web of Conferences 97, 04015 (2019) https://doi.org/10.1051/e3sconf/20199704015
FORM-2019



2,1 ,0:

,0
1

:

2

1
1


















iux

t

u

cx

u
x

i

i

R

i





     (5) 

providing energy entrainment from the structure to infinity in the form of the Rayleigh 

wave across the boundaries of the finite domain V5. 

Here: u


, ij , ij - are the components of the displacement vector  21,uuu 


, of the 

strain and stress tensors, respectively; u


 , ij  are the isochronous variations of 

displacements and strains; m  is the density of material of the m-th element of the system; 

f


 is the vector of mass forces; p  is the vector of external loads; тГ  is the relaxation 

kernel; j  are the guide cosines of the outer normal; Rc is the propagation velocity of the 

Rayleigh wave in the half-space (when viscoelastic properties of the foundation material 

are taken into account, these quantities are complex values); Km, m are the instantaneous 

modulus of volume and shear strains; ijij eS ,  are the components of the stress and strain 

deviator;   is the spherical part of the strain tensor;   is the volume strain; ,,A  are the 

kernel parameters determined from experiment [16, 17]; m=1,2,3,4,5 – are the numbers of 

the system elements; i,j=1,2. 

Natural, steady-state and unsteady forced oscillations of an inhomogeneous system are 

considered (figure 1). All considered problems are solved by the finite element method 

(FEM) with the discretization of the domain V+V5 on different types of finite elements. 

When solving specific tasks, the discretization of the domain V+V5 (figure 1) on finite 

elements is carried out taking into account the design features and the physicomechanical 

properties of material of different parts of the system. 

2.1 Natural oscillations 

The problem of natural oscillations of the system (figure 1) using the FEM procedure is 

reduced to solving the eigenvalue problem of an algebraic equation with complex 

coefficients: 

        02  XMCiK      (6) 

Here  M  is the mass matrix;  K  is the stiffness matrix and  C  is the matrix, taking 

into account the wave entrainment of energy across the boundary of the finite domain. 

Matrix elements ( ijij ck , ) are complex values.  =R-iI  is the eigenfrequency and 

    }{ IR XiXX   is the eigenvector. 

In equation (6), complex matrices appear when taking into account the viscoelastic 

properties of the material and replacing the Voltaire integral operator (2) with complex 

relations [11, 14]. 

The system under consideration (figure 1) is non-conservative, even if only the elastic 

properties of material are taken into account using condition (5); therefore the natural 

frequencies and vibration modes ( and  X ) are the complex values. The real part R of 

the complex parameter  (of natural frequency) is in its physical sense the frequency of 

free damping oscillations of the system, while the virtual partIcarries information about 

the oscillation damping velocity and, up to a sign, is equal to the damping coefficient, 

which is a quantitative characteristic of the oscillation damping velocity and determines 
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dissipative properties of the systems in general. This explains the legitimacy of the use of 

the wave dissipation term, i.e. energy entrainment across the boundary of the finite domain 

V5. 

To find the roots of complex algebraic equations (6), a special algorithm and a software 

computer program using the Muller method have been developed, and the Gauss method 

was used to determine the eigenvectors. 

2.2 Steady-state forced vibrations  

At long-term harmonic effect, the initial conditions do not affect the motion of the system. 

In this case, the dissipative properties of the system are manifested mainly in resonant 

modes. Resonance amplitudes of displacements and stresses are used as a quantitative 

estimate of the intensity of dissipative processes [18]. 

The problem of steady-state forced oscillations of a system (figure 1) using the FEM 

procedure is reduced to solving a system of inhomogeneous algebraic equations with 

complex coefficients, i.e.: 

           fFuMCiK  2
    (7) 

Here  M ,  K ,  C  are the same notations as above;   is the given actual frequency 

of external effect;  X  is the vector of the sought for complex amplitudes;  f  is the 

amplitude vector of periodic effect;  F  is the total vector of external loads (mass forces, 

hydrostatic pressure of water, etc.). 

When forming equations (7), the Volterra operator (2) is replaced by complex relations 

[11, 14], which take into account the infinite lower limit of the integral in (2). 

The algebraic equation with complex coefficients (7) is solved by the Gauss method. 

2.3 Unsteady forced oscillations 

At short-term dynamic effect in the system (figure 1), there occur unsteady forced 

oscillations, the study of which allows to determine the maximum values of displacements 

and stresses of the structure during the entire impact process and to identify the most 

stressed areas in the system taking into account various inhomogeneous material parameters 

and structural features of the structure. 

The problem of unsteady forced oscillations of the system (figure 1) using the FEM 

procedure is reduced to solving a system of linear integro-differential equations 

                       duKtГtfFtuKtuCtuM

t

0

)()()(  (8)            

With initial conditions  

         00 v0,0  uuu       (9) 

Here matrices [M], [K] are the matrices of mass and stiffness of the system;  C  is the 

matrix, accounting the wave entrainment of energy;   tu  is the vector of the sought for 

displacement amplitudes;   tf  is the vector of dynamic load;  F  is the total vector of 

static loads (mass forces, hydrostatic pressure of water, etc.). 
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The solution of the system of integro-differential equations (8) with initial conditions 

(9) is obtained by the Newmark method [19]. 

3. Results 

Test problem 3.1 

The tasks of determining the natural frequencies and amplitude-frequency characteristics 

(AFC) of longitudinal forced oscillations of a viscoelastic rod of finite length (with 

different means of ends fixing) with A.R.Rzhanitsin kernel (3) and the oscillations of 

piecewise homogeneous semi-infinite elastic rod are considered in the paper. Analysis of 

the results has shown that the presence of an infinite domain in an elastic oscillatory system 

leads to the occurrence of dissipation related to the wave entrainment of energy. The real 

part of the natural vibration frequencies of a piecewise homogeneous semi-infinite rod 

coincides with the frequencies of an elastic rod of finite length with a fixed end, while for a 

viscoelastic rod of finite length this frequency is less than the frequency of the 

corresponding elastic rods; the dissipation related to the viscoelastic properties of material 

weakly depends on the natural vibration frequency, and the wave entrainment of energy in a 

piecewise-homogeneous semi-infinite elastic rod is most intensely manifested at the first 

vibration frequencies. 

The study of steady-state forced oscillations of these rods at different frequencies of 

external effect and the obtained amplitude frequency characteristics confirmed the 

conclusions related to the manifestation of dissipation. 

Test problem 3.2 

The solution of the axisymmetric Lamb problem for an elastic half-space with a rigid round 

stamp installed on the surface which performs harmonic oscillations in the vertical direction 

is investigated in the paper. When solving the problem, a finite axisymmetric domain of 

volume V5 is cut out of the half-space, on the boundary of which condition (5) is set. 

Experimental data corresponding to this problem are available in [20], where the 

propagation of a wave in soil initiated by the hammer impact on the foundation is 

investigated. Comparison of the obtained results led to the possibility of using the condition 

of energy entrainment when solving a dynamic problem for a finite domain. The accuracy 

of the solution depends on the choice of the volume V5 of the cylindrical body. 

Results of the studies have shown that solving a dynamic problem when replacing an 

infinite foundation with a finite domain without setting conditions that ensure energy 

entrainment in the form of a wave across the boundaries of the finite domain leads to 

parasitic resonances caused by oscillations of a finite-dimensional body unrelated to the 

problem in question and the use of conditions providing the energy entrainment in the form 

of a wave across the boundaries of the finite domain, allows one to get rid of the resonance 

that does not take place in reality. 

Problem 3.3 

Natural oscillations of the Pachkamar earth dam are considered taking into account the 

viscoelastic properties of material and the inhomogeneous features of the “structure-

foundation” system with and without taking into account the wave entrainment of energy at 

the boundary of the finite domain of the foundation (5). 

This dam has: height H = 70.0 m; the coefficients of the laying of the upstream slope 

m1= 2.0; of downstream slope m2= 2.0. Shear modulus (), Poisson's ratio () and specific 
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weight (  ) of the dam material are: for the core (loam soil) -  = 0.35,  = 2900 kgf/cm
2
, 

 = 0.0018 kgf/cm
3
; parameters [16] of the relaxation kernel (3): A = 0.0146, α = 0.2, β = 

0.0000057; for retaining prisms (sand and pebble) -  = 0.35,  = 3580kgs/cm
2
,  = 

0.00225 kgf/cm
3
; for facing (monolithic concrete) -  = 0.25,  = 84000 kgf/cm

2
,  = 2.4 

tf/m
3
; for the foundation -  = 0.3,  = 3790kgs/cm

2
,  = 0.0026 kgf/cm

3
; parameters of the 

relaxation kernel (3) are: A = 0.034, α = 0.25, β = 0.00036. 

If to consider the dam without regard to the foundation, i.e. located on a rigid 

foundation, then an account of the foundation leads to a slight decrease in natural 

frequencies of the dam, although only elastic properties of structure material are taken into 

account. 

For the “structure - foundation” system at the boundary of the finite domain of the 

foundation with account of the wave entrainment of energy, the natural frequency of the 

system is complex, even if the material of the “structure-foundation” system is elastic. The 

virtual part of the frequency, i.e. ,I means the manifestation of dissipation in the system 

related to the wave entrainment of energy (i.e., wave dissipation) from the structure to 

infinity. 

The real part R  
of natural frequency IR i  of the system oscillation is 

slightly reduced compared with the frequency in elastic case, obtained without 

considering the wave entrainment of energy and internal dissipation. 

If to estimate the value of the logarithmic decrement of oscillations of the system , 

(when only the wave entrainment of energy is taken into account at the boundary of the 

finite domain), then we can see that the values , corresponding to the first natural 

frequency have the largest values, compared to other,corresponding to second, third and 

other frequencies (figure 2). 

a)        b) 

 

Fig. 2.  Change in logarithmic decrement of oscillations depending 

on the value of the natural frequencies of the Pachkamar dam with wave entrainment of energy (a) 

and with internal dissipation in material (b) 

 

If, in exactly the same way, to evaluate the manifestations of internal dissipation in 

material of the structure-foundation system, then we can see a picture similar to the one 

described above. The only difference is that the values of the logarithmic decrement of 

oscillations , in different natural frequencies of oscillations of the system differ slightly 

(figure 2b). 

The results obtained (figures 2a,b) for evaluating the manifestation of dissipation 

indicate that when assessing the dynamic strength of earth dams, it is necessary to take into 

account both types of dissipations; this can provide adequate results corresponding to the 

actual strain of the structure. 
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Problem 3.4 

Next, using the above method, we have studied the dynamic behavior of the above-

considered inhomogeneous system (figure 1) in a plane statement. The foundation is 

considered elastic, and the structure - viscoelastic. As an external load, a non-stationary 

effect is used, changing according to the law:  
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   (10) 

The load P(t) in kN is also plane and applied at a distance of 25 m from the foot of the 

dam on the surface of the foundation, i.e. on the site p (figure 1). It is necessary to 

determine the fields of displacements and stresses in the body of the dam at different points 

in time under instantly applied loads (10). 

In calculations the following values have been taken: 

- for the dam: the  height H = 168.0 m, coefficients of the upstream and downstream 

slopes m1=m2=2.2m; the crest width b = 10.0 m; material properties: modulus of elasticity 

E = 3000.0 MPa; Poisson's ratio ν = 0.3; the specific gravity of soil = 2.2 tf/m
3
. To take into 

account the viscoelastic properties of soil, the A.R. Rzhanitsin’s kernel (3) is used with the 

parameters [16]: A=0.0146; α=0.2; β=0.0000057. 

-for the foundation: the modulus of elasticity E = 3600.0 MPa; Poisson's ratio ν = 0.3; 

the specific gravity of soil = 2.8 tf/m
3
. 

The solution of this problem with the given parameters has revealed that the waves 

initiated by the applied load P(t) create an irregular field of displacements in the dam body. 

The beginning of the motion of each point of the structure corresponds to the time the wave 

front approaches it, determined by the distance of the point from the point of load 

application and the velocity of wave propagation in soil. 

Figure 3 shows the isolines of the distribution of horizontal displacements in the cross 

section of the dam at different points in time. A wave from a source located in relative 

proximity to the foot of the dam, propagating along the foundation, first causes a 

displacement of the foot of the upstream slope (figure 3a), and over time covers more 

remote areas of the structure (figures 3c, d). In this case, the lower region of the upstream 

slope, bounded by the isoline "1", remains motionless as a result of wave diffraction at the 

foundation-slope junction [21]. An isoline with the same index on the downstream slope 

(figure 3b) corresponds to the position of the wave front, in front of which there is an 

undisturbed (at t = 0.46 sec) area of the dam (the right side of the figure). In the subsequent 

time, the disturbance from the load P(t) completely covers the dam body and the 

propagation of horizontal displacements in it is represented by the isolines in figures 3a-d. 

After wave propagation, the strain state of the dam gradually stabilizes. 

The values of horizontal displacements on isolines (figure 3) increase with an equal 

interval of 0.005 m beginning from 0.0 m - on the isoline "1". The maximum displacement 

is 0.042 m and is observed in the area bounded by the line with index “9”; on the line the 

displacement is 4 cm. 

The stress state of the dam, represented by the principal stresses σ1 at different points in 

time: at the beginning, in the middle and at the end of the process is shown in figure 4. The 

dimensionality ofstress is MPa. 

At the initial time of the process the lower part of the upstream slope is strained in the 

dam, where a tension zone with positive stresses σ1 appears (line “2” in figure 4a), later, as 

the wave propagates, this zone extends upwards along the slope (figures 4b, c ) covering the 

entire internal area of the dam (figures 4c, d). The value of stresses σ1 on isolines (figure 4) 
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changes with the same step of 0.05 MPa:  beginning from 0.0 MPa - on the line “1” up to 

0.3 MPa - on the line “6”. 

 

a)         b) 

 

c)         d) 

  

Fig. 3.  Isolines of the distribution of horizontal displacements (m) in the section of the dam  

at different points in time t: (a) - 0.2 sec, (b) - 0.32 sec, (c) - 0.52 sec, (d) - 0.60 sec 

a)         b) 

    

c)         d) 

     

Fig. 4 .Isolines of the distribution of the principal stresses σ1 in the dam section  

at different points in time t: (a) - 0.2 sec, (b) - 0.32 sec, (c) - 0.52 sec and (d) - 0.60 sec 

a)         b) 

    

c)         d) 

     

Fig. 5. Isolines of the distribution of tangential stresses σ12 in the section of the dam at different points 

in time t: (a) - 0.2 sec, (b) - 0.32 sec, (c) - 0.52 sec and (d) - 0.60 sec. 
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Maximum tangent stresses (σ12) arise on the surface of the upstream slope (figure 5): 

first at its foot, and then over its height, which is fraught with the possibility of a landslide 

on the slope (figure 5). 

The magnitude of the stresses σ12 on isolines (figure 5) varies with a step of ± 0.025 

MPa from 0.0 MPa on the “5” line to ± 0.1 MPa on the “1” and “9” lines. 

4. Conclusion 

1. A mathematical model, method and algorithm have been developed for evaluating the 

dynamic behavior of an inhomogeneous structure–foundation system, taking into account 

non-reflecting conditions at the boundary of the finite domain of the foundation. A linearly 

hereditary theory of viscoelasticity is used to describe the internal dissipation; as for the 

wave dissipation the conditions are used to ensure the energy entrainment in the form of a 

Rayleigh wave across the boundaries of the finite domain of the foundation. 

2. Various model problems have been solved to assess the adequacy and accuracy of 

models and calculation methods. 

3. The study of the dynamic behavior of inhomogeneous viscoelastic “dam-foundation” 

system with non-reflecting boundary conditions on the boundary of the finite domain of the 

foundation has shown that: 

- the maximum principal stresses σ1, arising in the lower part of the upstream slope, 

gradually propagate over the entire slope and the central area of the dam; 

- the maximum principal stresses σ2 are reached near the foot of the dam and as the 

wave propagates, they move along the foundation directly behind the wave front; 

- maximum values of tangential stresses σ12 are reached on surface of the upstream 

slope, first at the foot of the dam, then over the surface of the slope. There are no tangential 

stresses in the center of the dam; 

- at the wave propagation in the dam the symmetric pattern of stress state caused by the 

static effect of gravitational forces is broken; there occurs an asynchronous motion of its 

parts, which decays due to the energy entrainment and viscoelastic properties of material of 

the system. 
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