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Abstract. Mechanical characteristics of soils under dynamic and static 

loads are determined in laboratory conditions on special devices. Dynamic 

loads in the devices are initiated by an impact on a soil sample. Under the 

impact the waves are initiated in soil; they significantly affect the stress-

strain state of soil samples placed in the device. Depending on the 

parameters of the impact load in the device, in different sections of soil 

sample there arise the stress-strain states, different in quality and quantity. 

Mechanical characteristics of soil, determined by this stress-strain state, 

also differ. The effect of stress-strain state of soil on its mechanical 

characteristics can be estimated theoretically. The initiation of the wave 

process and dynamic stress-strain state in soil sample placed in the device 

can be theoretically examined in detail. In this regard, the wave problem is 

set, which corresponds to the statement of experiments on the device of 

dynamic loading of soil. The law of soil strain is taken as an elastic-

viscoplastic one. Numerical solution of wave equations is obtained by the 

finite difference method. Based on the analysis of stress-strain state of soil 

in various sections, obtained by numerical calculations, the condition is 

derived under which the effect of wave processes on mechanical 

characteristics of soils is eliminated. This condition (formula) establishes 

the relationship between the wavelength, the velocity of wave propagation 

in soil, the thickness of the soil sample in the device and the duration of 

dynamic load. 

1. Introduction 

The reliability of buildings and structures is directly related to the strength of soil on/in 

which they are located. The soil strength depends on mechanical characteristics of soil. So, 

a reliable determination of mechanical characteristics of soils is an important problem of 

the reliability and seismic resistance of buildings and structures. Mechanical characteristics 

of soil are related to the laws of soil strain. These characteristics include the modulus of 

elasticity, Poisson’s ratio, unloading modulus, soil viscosity coefficient, etc. Mechanical 

characteristics of soil are mainly determined by experiments. Mechanical characteristics of 

soils based on specific elastic-viscoplastic models of soils are defined in [1 - 5] under static 

and dynamic loads in laboratory and field conditions. 
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The complex laws of strain in soils and rocks [6-10], applied problems of destruction 

[11], a comparative analysis of mechanical characteristics determined by different methods 

[12], nonlinear models of soil strain [13 - 18] and non-one-dimensional problems of seismic 

stability of earth structures – all these aspects require experimental data on mechanical 

characteristics of soils and rocks, especially when they are subjected to dynamic loads. 

The values of mechanical characteristics of soils in calculating the seismic stability of 

underground structures [5] are of particular relevance. Without the knowledge of necessary 

mechanical characteristics of soils under dynamic strain, it is impossible to estimate the 

quantitative parameters of the waves propagating in soil media and rocks [1 – 5, 16]. The 

reliability of the values of mechanical characteristics of soils is also very important when 

solving the problems of seismic resistance of above-ground and underground structures [19, 

20]. 

In field experiments it is almost impossible to get the repetitions of exactly the same (in 

quantity and quality) experiments, which make possible the statistical processing of results. 

The latter aspect is very important to prove the reliability of experimental results. 

The authors in [3] have created a special device for dynamic loading (DDL) to 

determine dynamic characteristics of soils. A soil sample of undisturbed and disturbed 

structure is tested for shock loads created by the falling of a weight. The DDL works on the 

principle of a compression device to test static loads in soils. The design description of the 

DDL and the principle of its operation are given in detail in [3]. The method of 

experimental determination of mechanical characteristics of soils proposed in [3] allows 

serial experiments, the results of which are then processed using the mathematical statistics 

methods. As a result, essentially reliable experimental data are obtained for determining 

mechanical characteristics of soils under dynamic loads [3]. 

However, another problem arises when conducting experiments on dynamic 

compression of soil samples on the DDL. It lies in the fact that the stress measurement 

results are influenced by the wave processes that occur in a soil sample when it is subjected 

to a shock load. To accurately measure the stresses under dynamic uniaxial compression of 

soil on the DDL, it is necessary to ensure the quasistatic nature of the process of soil strain. 

Quasistatic nature of the process of dynamic strain is satisfied under conditions 
d

0
dx


  

and 
d

0
dx


 ; where   is the longitudinal stress on x-axis of compression,   is the 

longitudinal strain on x-axis. 

The aim of this work is a theoretical study of the wave processes in a soil sample placed 

in the DDL soil receiving chamber and determination of the condition for the quasistatic 

nature of the process of dynamic strain in a soil sample based on the analysis of wave 

parameters in soil. 

2. Methods 

The devices UDN-100 and UDN-150 described in [3] have a cylindrical soil receiving 

chamber of a diameter of 0.1 or 0.15 m and a height of 0.03 m, into which a cylindrical soil 

sample of undisturbed or disturbed structure is placed. The bottom plane of the chamber on 

which the soil sample rests is fixed. On the upper plane of the soil sample there is a piston, 

through which the dynamic load created by the impact of a weight free falling along the rod 

guides, is transferred [3]. 

The wave pattern corresponding to the statement of experiment on the DDL is quite 

complicated. On the x-axis of a cylindrical soil sample, a load acting from the upper piston 

varies from zero to a maximum and then again to zero. According to the results obtained in 
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[3], one of the conditions for ensuring the quasistatic behavior of the strain process is the 

ratio of the rise time of the load to the maximum and the fall time to zero. The rise time of 

the stress should always be less than the fall time. The change in stresses is presented in the 

form of a half-period of a sinusoid, in this case the rise time equals to the fall time. This is 

more rigid condition for ensuring the quasistatic nature of the process of soil strain on the 

DDL. 

The load acts uniformly on the upper plane of the soil layer, located in the DDL soil 

receiving chamber, from which follows the one-dimensionality of dynamic and static 

processes of soil compression. The side walls of the soil receiving chamber have sufficient 

roughness that allows one to take the friction force between the soil and the side wall as 

equal to zero. Based on this, the soil friction forces on the side surface are neglected. 

A layer of soil 0.03 m thick is located at a distance 
*0 x  along the x-axis. At a distance 

*x x  there is an upper plane of the lower, absolutely rigid, fixed piston. This plane can 

also be considered as a fixed obstacle. 

According to the results of experiments given above, the soil is considered to be an 

elastic-viscoplastic medium. At 0t  , load  t   begins to act on the soil layer; this 

load obeys a sinusoidal law. A wave propagates through undisturbed soil. The front of this 

wave reaching the lower plane is reflected from it. Under load  t   plastic strains are 

formed in soil. Consequently, a plastic wave propagates in soil. After load  t 

reaches its maximum, another front is formed – of maximum stresses in soil. At  

( ) 0t    the front of unloading wave propagates in soil. The fronts reflected from the 

lower piston (
*x x ) and from the upper piston located at 0x  , form a complex wave 

pattern. 

Due to the fact that the load acting on the soil layer is continuous, these fronts are the 

lines of weak discontinuity, that is, on these fronts the wave parameters do not have jumps 

(discontinuities). Only the first derivatives of the wave parameters can have discontinuities 

on these fronts; therefore, they are called the weak discontinuity lines. This circumstance, 

as will be shown later, greatly simplifies the solution of theoretical problem corresponding 

to the dynamic compression of the soil layer on the DDL. 

The linearity of wave fronts mainly depends on the specific type of the equation of state 

of soil. In the case of linearity or even piecewise linearity of the equation of state of soil, 

which determines mechanical characteristics of soil, the wave fronts remain linear. 

Otherwise, these fronts are nonlinear ones. In the case of nonlinearity of the fronts, the 

problem of dynamic compression of a soil sample on the DDL becomes significantly 

complicated. Therefore, the wave pattern and the statement of the problem corresponding to 

the case under consideration directly depend on the equation of state or the law of soil 

strain, on the basis of which mechanical characteristics of soil are determined. 

In [3, 4, 15] it is shown that even at loads of 0.3–0.5 MPa, the process of dynamic strain 

of loess soil in experiments displays the elastic-viscoplastic properties of soils. Based on 

this, a soil model adequate to this process is chosen. 

According to the analysis of the equation of state of soil [1 - 5, 15], the most perfect law 

of soil strain, taking into account the plastic strain of soil and its viscous properties at 

volume changes, is the law proposed in [4]. Consider this law in relation to the process of 

strain of loess soils on the DDL. 

The model of elastic-viscoplastic medium [4] has the following form: 

d d

d dD St E t E

  
     at 

d d
0, 0

d dt t

 
                                (1) 

3

E3S Web of Conferences 97, 04009 (2019) https://doi.org/10.1051/e3sconf/20199704009
FORM-2019



d d 1 1 1 1 1

d d
m

R S D R D Rt E t E E E E E

 
  

   
         

  
 at 

d d
0, 0

d dt t

 
   (2) 

d d

d dRt E t

 
  at 

d d
0, 0

d dt t

 
                                             (3)

 
where DE   is the modulus of dynamic compression of soil at d / dt  , 

SE  is the 

modulus of static compression of soil at d / d 0t  , 
RE   is the unloading modulus,  

is the viscosity parameter, related to the viscosity coefficient by the ratio  

( )

D S

D S

E E

E E






                                                    (4) 

where    is the soil viscosity coefficient at volume changes, 
m  is the maximum stress 

in the soil particle. 

The strain  , as applied to the experiments on the DDL-150, uniquely determines the 

change in volume of the soil layer. Therefore, it can be taken as a volumetric strain, and 

   as the pressure. In this case, P   , where P   is the pressure. It follows that the 

equation of state of soil (1)-(3) is the law of variation of the spherical part of the stress 

tensor, that is, the law of volume strain of soil. From (1)-(3) it is seen that in this case the 

main mechanical characteristics of soil are , , and orD S RE E E   .  

Until now, the values of these mechanical characteristics of soils or others (based on 

other equations of state) have been determined directly from the results of experiments 

based on soil compression diagrams. 

To consider the wave process in soil and the dynamic strain of soil on the DDL, it is 

necessary to solve the equation of motion of soil, which has the form: 

0 0, 0
v v

t x x t

 


   
   

   
                                            (5) 

where 0   is the initial density of soil, v  is the velocity of the soil particles under 

compression. 

The equation of one-dimensional motion of soil in the DDL (5) is successively closed 

by the equations of state of soil (1)-(3). In the closed system of equations (1)-(5), the 

unknowns are ,   and v , called the parameters of the waves in soil or the parameters of 

the stress-strain state of soil in the DDL. 

To solve the system of differential equations (1) - (5), initial and boundary conditions 

are necessary. The initial conditions of the problem are zero, since before the impact of the 

load, the soil on the DDL is at rest, that is, it is considered undisturbed. 

The boundary conditions of the problem corresponding to the statement of the 

experiment are the following: at 0x   the upper plane of the soil layer on the DDL is 

affected by the load  t   through the motion of the upper piston; at 
*x x  the lower 

piston is fixed, 0v  , i.e. the velocity of the soil particles at this boundary is zero. 

Mathematical formulation of the boundary conditions is as follows: 

                                                           ( )t   at *0, 0x t t                                       (6) 

  0   at *0,x t t                                               (7) 

                                                            0v   at *x x                                                     (8) 

where *t   is the time of load effect. 

On the front of the incident wave, the following condition is satisfied: 

0, 0, 0v        at      x ct                            (9) 

4

E3S Web of Conferences 97, 04009 (2019) https://doi.org/10.1051/e3sconf/20199704009
FORM-2019



where c  is the velocity of longitudinal wave propagation in soil, , , v   are the 

jumps in wave parameters. 

In the equations of state (1) – (3), the front line x ct  and the lines of all other fronts 

are straight lines. This follows from the linearity of the equations that make up the law of 

soil strain (1) – (3). 

Thus, the process of dynamic strain in the soil sample placed on the DDL is described 

by the system of equations (1) - (5). Having solved the system of equations (1) - (5) with 

boundary conditions (6) - (9) and zero initial conditions, the dynamic stress-strain state of 

soil can be determined. The system of equations (1) - (5) is a hyperbolic one [3, 5]. At 

present, it is not possible to obtain an analytical solution of these equations. Therefore, the 

approximate methods are used. Following [3, 5], the differential equations in partial 

derivatives are reduced by the method of characteristics to the ordinary differential 

equations. Hyperbolic system (1) - (5) has real characteristics and characteristic relations. 

The application of the finite difference method to ordinary differential equations 

improves the accuracy of the solution as compared to partial differential equations [3, 5]. 

The derivation of the equations of characteristics and characteristic relations is given in 

more detail in [4]. In [15], the solution of the problem of explosive wave interaction with a 

rigid moving obstacle in soil is considered. The problem we are considering here differs 

from [15] by the boundary conditions, the nature of the load acting on soil and the aim of 

the task. 

Thus, the solution of the system of equations (1) - (5) with boundary conditions (6) - 

(9), is obtained by the method of characteristics with the subsequent application of the 

method of finite differences. On the basis of the developed algorithm for solving the 

problem, a program for solving the problem in the Turbo Pascal algorithmic language has 

been created. The developed program is implemented on a computer. The stability of the 

algorithm for solving the problem is verified by a numerical experiment. The results of 

numerical experiments have shown that the stability of the computational scheme and 

algorithm is fully ensured and controlled by the Courant condition. 

3. Results 

The regularities of plane wave propagation in soil as in elastic-viscoplastic media are 

theoretically investigated in [4, 5, 16]. The solution of the theoretical problem according to 

the above method in the case when soil is a linear viscoelastic medium (a standard linear 

body), has been carried out numerically in [4, 16] using the method of characteristics. In [4, 

16], the problems of wave interaction with a moving non-deformable obstacle in a 

viscoplastic medium — soil — are considered. The interaction of a wave with a deformable 

obstacle in a viscoelastic medium has been studied in [5]. 

The interaction of a continuous compression wave with a rigidly fixed obstacle in an 

elastic-viscoplastic medium has not been studied yet. Consequently, the solution of the 

problem considered here is obtained for the first time. The considered problem of the 

interaction of a plane continuous compression wave with a rigidly fixed obstacle in an 

elastic-viscoplastic medium — soil - is being investigated here on the DDL to substantiate a 

reliable determination of mechanical characteristics of soils. Nevertheless, the developed 

algorithm and the program for solving the problem allow us to investigate on the basis of 

the results of numerical solutions the change in the wave parameters  in soil and the laws of 

soil strain, not only in relation to the DDL. 

The main parameters (initial data) of the problem to conduct the calculations are: 

- the soil characteristics – ;,,,/,/ 0  cEEEE RDSD    

– the load characteristics – 
max *,t ;    
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– the distance from the initial section of soil to the obstacle – *x . 

The options for computer calculations at different values of these parameters are given 

in Table 1. They are selected based on the parameters of seismic load in loess soils [5]. 

Based on the results of experiments [5], the value of the maximum load 
max  for all options 

is taken as equal to 0.5 MPa. The initial density of soil 0  is 1500 kg/m
3
, the velocity of 

longitudinal wave propagation is 100 m/sec. Values 0  and c  for option 6 have been 

changed: 0 2000 kg
3
/m, c 1000 m/sec. Option 6 corresponds to elastic-plastic soil, 

where the density of soil and, respectively, the velocity of longitudinal wave propagation in 

soil are more significant than the ones in elastic-viscoplastic soil [5]. 

Table 1. Options of numerical calculations and the values of initial data 

No of the option     *,x m  *,t s  1,s 
 

1 2 0.5 2.8 0.1 100 

2 4 0.5 2.8 0.1 100 

3 2 0.5 0.28 0.1 100 

4 2 0.5 0.03 0.1 100 

5 4 0.5 0.03 0.1 100 

6 1.05 0.5 0.03 0.1 1000 

7 2 0.25 0.03 0.01 100 

8 2 0.5 0.03 0.01 100 

9 2 0.5 0.03 0.001 100 

  

When choosing the options listed in Table 1, virtual values of * *, , , ,x t    have been 

taken into account according to [3 - 5, 16]. 

The value of the dynamic compression modulus is determined by formula 2
0DE c  , 

the static compression modulus by /S DE E  , and the unloading modulus  by

/R DE E  . 

Numerical solution of the problem is obtained in a dimensionless form. Then, it was 

converted to a dimensional form. Consider the results of calculations obtained on a 

computer. 

 

Fig. 1. Change in stresses in soil sections: 1) 0x ; 2) 28.0x ; 3) 56.0x ; 

4) 15.1x ; 5) 2.1x ; 6) 55.2x  ; 7) 8.2x  m 
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Fig. 2. Change in strain in soil sections:  1) 0x ; 2) 28.0x ; 3) 56.0x ; 4) 15.1x ;  

5) 2.1x ; 6) 55.2x  ; 7) 8.2x  m 

 

Figure 1 shows the change in the longitudinal stresses  over time t  for different 

sections of soil for option 2 (Table 1). Curves 1-7 refer to soil sections at 0; 0.28; 0.56; 

1.15; 1.2; 2.55 and 2.8 m, respectively. At  *xx 2.8 m there is a fixed and non-

deformable obstacle (the lower piston of the DDL). 

In theoretical calculations it is possible to locate the lower piston of the device at an 

arbitrary distance from the upper piston. In option 2, the obstacle (the lower piston) is 

specifically set aside at a distance of *x 2.8 m in order to study the patterns of change in 

the wave parameters in soil. 

According to the conditions set, a half-period of sinusoidal load is acting on soil (Figure 

1, curve 1). At a distance of x 2.83 m there is a lower piston of the device (an obstacle). 

In this option, at the load time 1.0* t sec, the wave 3.5 times runs to the obstacle and 

back. As a result of the superposition of waves reflected from the lower and upper pistons, 

different stress values are observed on different sections of the soil layer. At the obstacle, 

the maximum stress is 1.6 times greater than in the initial section (curve 7). In other 

sections of soil, the maximum stress value is also greater than in the initial section. A 

similar pattern is observed in the dependencies  t  (Figure 2). Here also, the maximum 

strain is achieved on the obstacle (curve 7). The values of residual strains in soil sections 

are essential. Curves 1 - 7 refer to the same distances as the ones in Figure1. 

  
Fig. 3. Change in strain in soil sections: 1)

0x ; 2) 28.0x ; 3) 56.0x ;  

4) 15.1x ; 5) 2.1x ; 6) 55.2x  ;  

7) 8.2x  m 

Fig. 4. Stress-strain dependence for soil sections: 

1) 0x ; 2) 28.0x ; 3) 56.0x ;  

4) 15.1x ; 5) 2.1x ; 6) 55.2x  ; 

 7) 8.2x  m 
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Dependences of  t  and  t  in Figures 1 and 2 show that the changes in stresses 

and strains are different under dynamic loads in different sections of soil. This circumstance 

must be taken into account when conducting similar experiments. 

From Figures 1 and 2 it is seen that the wave processes in soil in this option present a 

complex pattern. When conducting field experiments, as in [5, 16], at a considerable 

thickness of a soil layer, to determine mechanical characteristics of soil under dynamic 

load, it is necessary to take into account the possibility of formation of complex wave 

processes in soil. 

Compression diagrams for the considered soil sections (option 2) are shown in Figure 3. 

Here, an elastic-viscoplastic strain in soil is observed in all sections of soil. However, 

quantitatively dependences     are different for different sections of soil. At the same 

values of initial data, on which the calculations of option 2 have been carried out, 

significant residual strains in soil are observed. The maximum stress values are slightly 

behind the maximum strain values. Mechanical characteristics of soils, determined on the 

basis of curves 1 - 7, are different. 

In general, as shown by the results of the above numerical solutions, the patterns of 

changes in the wave parameters in soil depend on the characteristics of soil, on the 

thickness of the soil layer and, of course, on the characteristics of dynamic load. The latter 

is especially important to ensure the quasistatic nature of the process of soil strain in 

experiments. This issue is studied on calculation examples of options 4 - 9 (Table 1). 

4. Discussion 

As shown above, the quasistatic nature of the process of dynamic strain in soil in the DDL 

depends on the thickness of the soil layer. At essential thickness of the layer * 0.3x   m 

and the time of load effect * 0.1t  sec, we can assume that the quasistatic nature of the 

process of soil strain is not provided (options 1 and 2). This means that the values of 

stresses and strains in different sections of soil will differ significantly. To refer these 

differences in experiments to the scattering of experimental data will be incorrect and will 

lead to incorrect results in statistical processing. Therefore, it is very important to exclude 

the differences in dependences of  t  and  t  associated with the influence of the 

waves reflected from the lower piston. In experiments, a complete coincidence of 

dependences of  t  and  t , fixed by sensors installed above and below the soil layer, 

is necessary. 

This is ensured, first of all, by the condition of the quasistatic nature of the process of 

dynamic strain in soil. In other words, when a dynamic load is applied, the soil layer strains 

almost statically, that is, at all its points the stress and strain values will be the same. Such 

dynamic strain of soil is called a quasistatic strain. 

The thickness of the soil layer in experiments on the DDL is * 0.03x  m. So, when 

choosing options 4 – 9 (Table 1), *x  is assumed to be 0.03 m. Using the calculation 

example of option 4, consider the change in the wave parameters in the soil layer of 3 cm 

thick and the load time *t  0.1 sec. In options 4 - 9, changes in the wave parameters are 

considered in the following sections of the soil layer x  0; 0.0028; 0.0056; 0.015; 0.02; 

0.0255 and 0.03 m. In Figure 4 these distances refer to curves 1 – 7, respectively. 
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Figure 4 shows the dependencies of     for the above sections of the soil layer 

(option 4, Table 1). From Figure 4 it can be seen that with a load time of *t  0.1 sec, the 

dependences of     for all sections of soil are absolutely the same. This proves the 

complete quasistatic nature of the process of soil strain on the DDL under dynamic load. 

Calculation results of the options given in Table1, allow us to estimate the quasistatic 

nature of the process of soil strain on the DDL. To do this, the half the wavelength, 

propagating in soil, is determined according to the following formula: 

ct                                                             (10) 

Introduce the ratio of the half the wavelength   to the thickness of the soil layer  . 

The data obtained for options 1 - 9 are shown in Table 2. 

 
Table 2. 

No of the option c , m/s *t  *x , m  ,m */ x  

1 100 0.1 2.8 10 3.5 

2 100 0.1 2.8 10 3.5 

3 100 0.1 0.28 10 35 

4 100 0.1 0.03 10 333 

5 100 0.1 0.03 10 333 

6 1000 0.1 0.03 100 3333 

7 1000 0.1 0.03 10 333 

8 100 0.01 0.03 1 33 

9 100 0.001 0.03 0.1 3.3 

 

According to the results of calculations (of options 1 - 9), for options 1, 2, 9 the 

quasistatic nature of the process of soil strain on the DDL is not clearly observed. For 

options 3 and 8 the quasistatic process is observed satisfactorily. For options 4 - 7 the 

quasistatic process is observed with high accuracy. 

Based on this and the data of Table 2, the following condition must be met to maintain 

the quasistatic nature: 

/ / 50ox                                     (11) 

At the ratio of the half the wavelength to the thickness of the soil layer   more than 50, 

the quasistatic nature of the strain process under dynamic compression of soil in the DDL is 

fully ensured. The higher the ratio of /  , the higher the quasistatic nature of the process 

of soil strain. Consequently, the reliability of experimental results obtained on the DDL and 

mechanical characteristics of soil determined on the basis of these experiments increases.  

5. Conclusion 

Numerical solution of the problem of dynamic compression of a soil layer, as an elastic-

viscoplastic medium, has been obtained as applied to the experiment statement on the DDL. 

The wave processes in soil are studied at various values of the problem parameters, 

which characterize soil properties, dynamic loads and the experimental setup of the DDL. 

The calculation results have established the degree of the effect of the problem parameters 

on the values of stress, strain, particle velocity and soil displacement. 

It has been established that a change in physical and mechanical properties of soil has 

practically no effect on the quasistatic nature of the process of soil strain in experiments on 

the DDL. 
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Based on the analysis of the results of numerical solutions, the conditions (formula) are 

derived to ensure the quasistatic nature of the process of dynamic strain of soil in 

experiments on the DDL. 
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