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Abstract. Operation of structures and equipment in dynamic conditions 

led to the problems of vibration isolation and vibration suppression. For 

vibration isolation and vibration suppression passive, active systems and 

their combinations are used. Passive vibration isolation usually consists in 

the fact that the protected object relies on extremely dimensional springs 

and vibration isolators. Vibration isolation systems containing only passive 

elastic and damping elements are called passive. Active vibration isolation 

and vibration damping systems use external energy sources. These are 

pneumatic, hydropneumatic and hydromechanical devices. Recently, 

electro-elastic and magneto-elastic systems [1], [2] began to be used for 

vibration isolation and active vibration suppression. As a rule, the analysis 

of the work of such systems consists in the development of an 

experimental layout and a schematic diagram. In this paper, a 

mathematically based model is used to solve the problem in question. The 

calculations are performed and the results are presented in the form of 
graphs.   

1. Introduction  

A three-layer beam with one elastic layer and two piezoelectric layers located 

symmetrically with respect to the elastic layer is considered. The middle layer is elastic; the 

outer layers are made of a piezoelectric material. The beam is related to Cartesian 

coordinates. The axis 1x  is directed along the length of the beam, the axis 2x  is directed 

along the width of the beam, the axis 3x  is orthogonal to them.  

The axis 1x  is directed along the length of the beam, the axis 2x  is directed along the 

width of the beam.  

It is assumed that the piezoelectric layers are pre-polarized in the direction 3x  [3] - [5].  

Longitudinal section of the beam in Cartesian coordinates and the electrical load are 

schematically shown in Fig. 1. 
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Fig. 1. Schematic representation of the structure of the layered beam. 

 

For our purposes, we will consider piezoelectric layers, in which the faces constx3   are 

completely covered with electrodes. If an electric potential   is specified on the electrodes, 

then the boundary conditions are  
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On short-circuited electrodes, the electric potential is zero 
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The superscript in parentheses indicates the layer number. Hereinafter, each formula with 

double signs ,  contains two formulas. To get one formula, you should take only the 

upper signs, to get the second formula you need to leave only the lower signs. 

In [6], we obtain the elastic relations for a multilayer electroelastic beam. Here we briefly 

present these results for a particular case - a three-layer beam. 

In the case of thin-walled beams in the equations of state, the stresses 22  and 33  can be 

neglected compared to the stresses 11 . In addition, it is assumed that the electroelastic 

state does not depend on the coordinate 2x . 

Taking into account the assumptions made, the equations for the elastic and electroelastic 

layers will be written as  

The system of equilibrium equations takes the form 
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Strain - displacement formulas 
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Equation of state (Hooke's law) for the elastic layer 
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Equations of state for piezoelectric layers 
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In formulas (3) - (8) 1u  and 1e  are the displacement and deformation in the direction 1x , 

respectively, 3E  and 3D  are the components of the electric field vector and electric 

induction vector in the direction 3x , Es11  is the elastic compliance at zero electric field, 31d  

is the piezoelectric constant, T
33  is the dielectric constant at zero voltages. The notation 

used is the same as that used in [5]  

On the surfaces of the beam, the mechanical surface load is usually specified as 
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3. Derivation of equations of electroelastic beam  

In order to construct a theory of electroelastic beams, one should accept some assumptions 

regarding electrical quantities. As in the construction of the theory of piezoelectric plates 

and shells [5], the content of accepted hypotheses depends on the electrical conditions on 

the surfaces of the piezoelectric layers. For piezoelectric layers, we accept assumptions that 

were substantiated by the asymptotic method for single-layer electroelastic plates and 

shells. For a piezoelectric layer with electrodated faces, the component of the electric 

induction vector 3D  normal to the faces does not depend on the thickness coordinate 3x  

)(
)(

,
)(

1

2

03

2

3 xDD


       (10) 

The electric potential is a quadratic function of the thickness coordinate 3x  
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If the electric potential is set on the electrodes (1), then formula (11) can be converted to 
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Taking into account formulas (12) and (8), we get 

)(
,

)(
,

)(
,

)(
,

)(
,

)(
)(

, ,,)( 2
111

33

31
2

2
2

2
13

2
21

2

2
2
03

2
2

2 


  



T

d
Eh

h

V
E h   (13) 

3

E3S Web of Conferences 97, 03024 (2019) https://doi.org/10.1051/e3sconf/20199703024
FORM-2019



where 
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The mechanical quantities of any layer for which the Kirchhoff hypotheses are valid can be 

written as the following linear functions of the coordinate 3x  
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Here   and   are the components of the tangential and bending deformation of the midline 

of the beam, respectively  
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Taking into account formulas (6) - (16), the equations of state for the piezoelectric layers 

can be rewritten as 
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Let us analyze the hypotheses that we used to reduce the three-dimensional problem to the 

one-dimensional theory of beams. It should be emphasized that for the piezoelectric layers 

with and without electrodes, different hypotheses are used, with the result that different 

coefficients are obtained in the one-dimensional electroelasticity relations (17). In addition, 

for the electric potential, many authors mistakenly accept the linear law of variation in the 

thickness of the beam. Under the linear law for the electric potential, the quantity 3E  is 

constant and in our notation is equal to 
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If an incorrect linear law for electric potential is adopted, then the formula for the stresses 

of the piezoelectric layer takes the form 
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Substituting formulas (18) and (19) into (7), taking into account that )(
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equating the coefficients with the same degrees of the coordinate 3x , we obtain 
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As a result of using the linear law for the electric potential, a contradiction was obtained - 

the second formula (20) in the bending problem does not make sense. This means that the 

linear law hypothesis for electric potential is, generally speaking, erroneous. 

Integrating the stresses in thickness of the beam, we find the resulting tangential force T  

and bending moment G  
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Having integrated the equations of motion and the equations of state for each layer, we 

obtain one-dimensional equations for a three-layer electroelastic beam. The equations of the 

theory of layered electroelastic beams of a symmetric structure have exactly the same form 

as in the case of thermoelastic beams. The problem in question, as in the theory of 

elasticity, is divided into two problems - a plane problem and a bending problem. 

Plane problem 
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Bending problem 
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Here N is the shear force 
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Both problems, up to constant coefficients, coincide with the corresponding problems of the 

theory of thermoelastic beams. To solve these problems we will use well-developed 

methods of the theory of elastic beam. 

4. Longitudinal vibrations of a three –layer beam 

As an example, we consider the damping of harmonic vibrations of a three-layer rod (all 

values vary according to the variable t according to the law 
t-i

e


 where the variable t is the 

time), therefore we will write down all the equations and boundary conditions with respect 

to the amplitude values of the unknown quantities. 

The upper and lower piezoceramic layers are located symmetrically with respect to the 

middle elastic layer. The thickness of the elastic layer is equal 12h , the thickness of each 

piezoelectric layer is equal to 2h , the length of the rod is l , the width of the beam is g  

(Fig. 1). One edge of the beam is rigidly fixed, the other is free from fasteners. 
The following electrical load excites longitudinal vibrations of the beam: 
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Let us turn to the dimensionless coordinates and the dimensionless sought quantities 

equations 
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where 2
1  is the dimensionless frequency parameter 

The resolving equation is  
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Its solution is 
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Arbitrary integration constants 1c  and 2c  are determined from the conditions at the ends of 

the beam 
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Satisfying conditions (26), we get 
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The natural frequencies are determined from the equation 01 cos  and they are equal to 
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Consider different cases. 

We consider vibrations under the action of the edge tangential force 
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We choose the potential difference so that 
)(

*

e
T*P . Then from the formulas (28), (25) it 

follows that 0*u  at all points of the beam. It is valid for any frequency of forced 

vibrations. The force *T  remains no wound to zero. It is constant along the length of the 

beam
)(

**

e
TT  . 

Then we consider vibrations under action the distributed tangential load. 

Let the distributed tangential load *X be non-zero and )(eT equals zero. In this case, the 

vibrations cannot be fully canceled, but the amplitude of vibrations can be significantly 

reduced by proper selection of the electrical load. 

For dynamics with a small variability of the stress-strain state along the longitudinal 

coordinate  , it is possible to pick up the electrical load *P  so that the greatest value of the 

displacement *u  becomes zero. To determine the three unknown constants, we obtain the 

following system of three equations: 
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The computational results are plotted in Fig. 2 ( 11  ).Hereinafter, the black and red lines 

depict the values of the stress-strain state without suppression vibration suppression and 

with suppression, respectively. 

Black lines correspond to the displacements and the forces of the beam with short-circuited 

electrodes under the action of a mechanical load. Red line corresponds to these quantities 

under the action of a mechanical load and a specially selected electrical load reducing 

displacements. 
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Fig.2. The dependence of (a) the displacement *u  and (b) the force *T  on the coordinate . 

 

The amplitude of vibrations can be further reduced by using cutted electrodes. We divide 

the length of the beam into two parts ],[ 10  , ],[ 11 . On the segment ],[ 10   there is an 

electrical load 1P , on the second part ],[ 11  there is an electrical load 2P . We will find 

values 
 1P and 2P  meeting the conditions for the equality of zero displacements at two 

points 1   and 1  

0101  ** u:;u:   
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In the general case, in order to reduce the amplitude of vibrations for any variability of the 

stress-strain state, we divide the beam into n intervals ],,[],...,,[],,[ nn  12110  00  , 

1n . At each interval on each electroelastic layer there is a pair of cutted electrodes. 

Denote the electrical load through iP  on the interval with number i of the beam. At each 

interval, we choose such an electrical load that would maximally reduce the amplitude 

displacements of the beam in this segment. 

The unknown electrical load on the interval with number i of the beam has the form 

i
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We will find unknown quantities n)1,...,iP (i  using the conditions 
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Fig.3. The distribution of a) the displacement *u , and b) the force *T  along the length of the beam 

after vibration suppression. 

 

The calculation results for n = 2, 11   (thick red line) and n = 4, 11   (thin red line) 

are presented in Fig. 3. From the graphs it can be seen that with an increase in the number 

of pairs of electrodes, the amplitude of the displacements decreases rapidly, and the 

amplitudes of the forces practically do not change. 

5. Transverse vibrations of a three –layer beam 

It is assumed that the following electrical load acts on the beam:  
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Taking into account the formulas (29), the system of equations (23) will be rewritten as 
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The resolving equation for the bending problem is written as 
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The solution of equation (31) is 
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We calculate the natural frequencies of the beam using the equation  
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The first three natural frequencies are 1.875, 4.694, and 7.855. 

Let the beam perform harmonic vibrations with low variability under the action of a normal 

load. *Z  Reduce the amplitude of vibrations of the beam using the unknown electrical load 

*Q . We choose the value *Q  in such a way that the largest deflection *w  on the free edge 

of the beam vanishes. 

If the stress-strain state has a large variability, a large number of electrode pairs should be 

used. When n pairs of electrodes are used, we have n segments of the beam 
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The system of algebraic equations contains 5n unknown constants and 5n equations. The 

results of calculations of the deflection at a) 11   and b) 41   are presented in Fig. 4. 

As above, the black line refers to the desired values without vibration suppression, and the 

red line with vibration suppression. Fig. 4 a) depicts the deflection of a beam with one pair 

and two pairs of electrodes and Fig. 4 b) depicts the deflection of a beam with four pairs of 

electrodes. 
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Fig. 4. The distribution of the deflection along the length of the beam at a) 11   and 

b) 41  . 

 

A thick red line (Fig. 4 a)) shows that when using one pair of electrodes on each 

piezoelectric layer, the maximum deflection value decreases 7 times. A thin red line (Fig. 4 

a)) shows that when using two pairs of electrodes on each piezoelectric layer, the maximum 

value of the deflection decreases 40 times. A thick red line (Fig. 4 b)) shows that when 

using four pairs of electrodes on each piezoelectric layer, the maximum deflection value 

decreases 10 times. 

6. Conclusions 

Analytical solutions of the problem of beam vibration suppression are obtained. Numerical 

calculations confirming the effectiveness of using the piezoelectric effect are performed. It 

is shown that 1) with an increase in the number of electrodes, the efficiency of vibration 

suppression greatly increases, 2) the greater variability of the electroelastic state, the greater 

the number of electrode pair that should be used.  

References 

1. A. Preumont, Kazuto Seto, Vibration Control of Active Structures (Wiley&Sons, 

(Wiley&Sons, 2008) 

2. D. J. Inmah, Vibration with Control. (Wiley Online Books. IBSB: 9781119375081, 

2017) 

3. D. A. Berlincourt, D. R. Curran, H. Jaffe, Piezoelectric and piezomagnetic materials 

and their function as transducer. Mason W P(eds.) Physical Acoustics 1A (New York 

Academic Press, 1964) 

4. IEEE Standart on Piezoelectricity, (New York: ANSI-IEEE Std. 176, IEEE, 1987) 

5. N. N. Rogacheva, The Theory of Piezoelectric Shells and Plates (Roca Braton: CRC 

Press, 1994) 

6. N. N. Rogacheva, J. of Applied Mathematics and Mechanics, 74(3), 721-734 

(ELSEVIER, 2010) 

 

10

E3S Web of Conferences 97, 03024 (2019) https://doi.org/10.1051/e3sconf/20199703024
FORM-2019


