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Abstract. The basic idea of a seismic barrier is to protect an area 

occupied by a building or a group of buildings from seismic waves. 

Depending on the nature of seismic waves that are the most probable in a 

specific region, different kinds of seismic barriers are suggested. For 

example, vertical barriers resembling a wall in a soil can protect from 

Rayleigh and bulk waves. The FEM simulation reveals that to be effective, 

such a barrier should be (i) composed of layers with contrast physical 

properties allowing “trapping” of the wave energy inside some of the 

layers, and (ii) depth of the barrier should be comparable or greater than 
the considered seismic wavelength. 

1.  Introduction  

1.1. Methods of seismic protection 

Generally, current approaches for preventing failure of structures due to seismic activity 

can be divided into two groups: (i) approaches for creating seismically stable structures and 

joints; this group contains different methods ensuring either active or passive protection; 

and (ii) approaches for creating a kind of seismic barrier preventing seismic waves from 

transmitting wave energy into a protected region.  
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While the first group includes a lot of different engineering approaches and solutions, 

the second one contains very few studies; see Takahashi et al. (2001) and more recent 

works by Motamed et al. (2008), Kusakabe et al. (2008) . The proposed research belongs to 

the second group.  

1.2. Possible types of wave barriers  

The considered seismic barriers can be of two types: vertical, aimed to reflect, trap, and 

dissipate most of the seismic wave energy; and horizontal, based on Chadwick and Smith 

(1977) and Love (1911) theorems, and aimed to prevent certain types of seismic waves 

from propagation; see, Fig. 1.  

Yet another interesting approach is to create a “rough” surface of the half-space to force 

the propagating Rayleigh wave scatter by caves and swellings; see Fig.2, where part of a 

free surface with the sinusoidal roughness is pictured. In this respect, the rough surface 

apparently transforms the elastic half-space into viscoelastic one. To be effective, 
periodic imperfections should have magnitude and period comparable to the magnitude and 

 
Fig. 1. Vertical and horizontal seismic barriers. 

 
Fig. 2. Rough surface acting as seismic barrier against Rayleigh waves.  
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wavelength of propagating Rayleigh wave (Sobczyk 1966, Maradudin & Mills 1976, 

Maradudin & Shen 1980).  

In practice, such a rough surface can be achieved by a series of rather deep trenches 

oriented transversally to the most probable direction of the wave front. Some of obvious 

deficiencies of this method are: (i) its inability to persist the surface waves other than 

Rayleigh waves; (ii) protection from Rayleigh waves travelling only in directions that are 

almost orthogonal to orientation of the trenches; and, (iii) high sensitivity to the frequency 

of travelling Rayleigh waves. These shortcomings made an idea of exploiting a rough 

surface as a kind of protective barrier, unrealizable.  

1.3. Vertical barriers  

For bulk waves the most effective vertical barrier would be an empty trench, or a trench 

filled in with a lighter material than the ambient soil. For such a barrier most of the wave 

energy would be reflected, as is shown on Fig.3.  

However, propagating Rayleigh or Love wave will simply overflow an empty trench, as 

Fig.4 shows.  

Thus, to be effective against the most dangerous types of seismic Rayleigh and Love 

waves, the vertical barrier should be of a more elaborate type. Possible structures of vertical 

barriers will be discussed later on.  

 
Fig. 3. Full reflection of an incident bulk wave from an empty 

trench. 

 
Fig. 4. Flow of Rayleigh wave around an empty trench 
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1.4. Horizontal barriers  

Horizontal barriers can be constructed by modifying properties of the outer layer preventing 

the corresponding surface wave from propagation.  

In practice, modifying physical properties of the outer layer can be achieved by 

reinforcing ground with piles or “soil nails”; see papers where reinforcing was studied for 

increasing bearing load of the soil (Blondeau 1989, De Buhan et al. 1989, Abu-Hejleh et al. 

2002, Eiksund 2004, Herle 2006).  

If distance between piles is sufficiently smaller than the wave length, then a reinforced 

region can be considered as macroscopically homogeneous and either transversely isotropic 

or orthotropic depending on arrangement of piles. Of course, homogenized physical 

properties of the reinforced medium depend upon material of piles, distance between them, 

and their arrangements.  

2.  Seismic surface acoustic waves  

In this section we proceed to analyzes of the main types of seismic surface waves and 

conditions for their non-existence  

2.1. Rayleigh waves  

These waves discovered by Lord Rayleigh (Strutt 1885) propagate on a plane surface of a 

halfspace; and exponentially attenuate with depth. These waves transmit the most seismic 

energy and lead to most severe damage in earthquakes.  

One interesting problem associated with Rayleigh waves is a problem of “forbidden” 

directions of “forbidden” (necessary anisotropic) materials that does not transmit a 

Rayleigh wave along some directions. Forbidden materials and forbidden directions have 

been intensively searched both experimentally and numerically (Lim & Farnell 1968, 1969, 

Farnell 1970) until mid seventies when the theorem of existence for Rayleigh waves was 

rigorously proved (Barnett & Lothe 1973, 1974a,b, Lothe & Barnett 1976 Chadwick & 

Smith 1977, Chadwick & Jarvis 1979, Chadwick & Ting 1987). This theorem states that no 

materials possessing forbidden directions for Rayleigh waves can exist.  

Despite proof of the theorem of existence, a small chance for existence of forbidden 

materials remained. This corresponded to the case of non-semisimple degeneracy of a 

special matrix associated with the first-order equation of motion; actually, this matrix is the 

Jacobian for the Hamiltonian formalism used for Rayleigh wave description. However, it 

was shown (Kuznetsov 2003) that even at the non-semisimple degeneracy a wave 

resembling the genuine Rayleigh wave can propagate. Thus, for waves propagating on a 

homogeneous half-space, no forbidden materials or directions can exist.  

2.2. Stoneley waves  

These are waves were introduced by Stoneley (1924), and analyzed by (Sezawa & Kanai 

1939, Cagniard 1939, Scholte 1947). Stoneley waves propagate on an interface between 

two contacting half-spaces.  

In contrast to Rayleigh waves, Stoneley waves can propagate only if material constants 

of the contacting half-spaces satisfy special (very restrictive) conditions of existence. These 

conditions were studied by Chadwick & Borejko (1994), Sengupta & Nath (2001).  

It should be noted that for the arbitrary anisotropy no closed analytical relations 

between material constants of the contacting half-spaces ensuring existence or non-

existence of Stoneley waves have been found (2010). 
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2.3. Love and SH waves  

Love waves (Love, 1911) are horizontally polarized shear waves that propagate on the 

interface between an elastic layer contacting with elastic half-space. At the outer surface of 

the layer traction-free boundary conditions are generally considered.  

In the case of both isotropic layer and half-space the conditions of existence derived by 

Love are:  

S S
layer halfspacec c ,                                                          (1) 

where *
Sc  are the corresponding speeds of the transverse bulk waves. At violating 

condition (1) no Love wave can propagate. For the case of both anisotropic (monoclinic) 

layer and a half-space the condition of existence is also known (Kuznetsov 2006a).  

SH waves resemble Love waves in polarization, but differ in absence of the contacting 

half-space. At the outer surfaces of the layered plate different boundary conditions can be 

formulated (Kuznetsov 2006b). In contrast to genuine Love waves, the SH waves exist at 

any combination of elastic properties of the contacting layers.  

Besides Love and SH waves a combination of them can also be considered. This 

corresponds to a horizontally polarized wave propagating in a layered system consisting of 

multiple layers contacting with a half-space. Analysis of conditions of propagation for such 

a system can be done by applying either transfer matrix method (Thomson 1950, Haskell 

1953), known also as the Thomson-Haskell method due to its originators; or the global 

matrix method mainly developed by Knopoff (1964).  

At present (2010) no closed analytical conditions of existence for the combined Love 

and SH waves propagating in anisotropic multilayered systems are known; however, these 

conditions can be obtained numerically by applying transfer or global matrix methods; see 

(Kuznetsov 2006a, b; Djeran-Maigre & Kuznetsov 2008).  

Different observations show that genuine Love and the combined Love-SH waves along 

with Rayleigh and Rayleigh-Lamb waves play the most important role in transforming 

seismic energy in earthquakes (e.g. Agnew 2002, Braitenberg & Zadro 2007). But, as we 

have seen, there is a relatively simple (at least from a theoretical point of view) method for 

stopping Love and the combined Love and SH waves by modifying the outer layer in such 

a way that conditions of existence (1) are violated.  

2.4. Lamb and Rayleigh waves  

Lamb waves (Lamb, 1917) are dispersive waves propagating in a homogeneous plate and 

(if a plate is isotropic) polarized in the saggital plane, similarly to polarization of the 

genuine Rayleigh waves. It is known (Lin & Keer 1992, Ting 1996) that Lamb waves can 

propagate at any anisotropy of the layer and at traction-free, clamped, or mixed boundary 

conditions imposed on the outer surfaces of the plate. The same result can be extrapolated 

to a layered plate containing multiple anisotropic homogeneous layers in a contact (Ting 

2002). Thus, for Lamb waves no forbidden materials exist.  

More interesting from seismological point of view are Rayleigh-Lamb waves. These are 

dispersive waves propagating in a layered plate contacting with a (homogeneous) halfspace. 

Rayleigh-Lamb waves in isotropic media are polarized in the saggital plane defined by 

vectors   (normal to a median plane) and n  (direction of propagation), as Lamb and 

Rayleigh waves. Needless to say that Rayleigh-Lamb waves are much more difficult for 

theoretical studies than Rayleigh or Lamb waves.  
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3.  Seismic barriers  

Herein, we present some results on numerical simulation of propagating seismic waves and 

their interaction with seismic barriers. The presented results were obtained by the explicit 

FE code implemented on a metacluster computer system.  

3.1. Vertical barriers  

Theoretical analysis and numerical simulations reveal that to effectively protect from 

Rayleigh and Rayleigh-Lamb waves a vertical barrier (Fig.1) should satisfy several 

conditions: (i) the barrier should have a composite layered structure composed of vertical 

layers with contrast physical properties; (ii) depth of the barrier should be comparable to 

the wavelength of the most probable seismic wave; (iii) the protected zone should be 

completely surrounded by a barrier to avoid flowing of the seismic wave inside the 

protected zone.  

  
a)                                                                     b) 

Fig. 5. Round-shaped vertical barrier protecting from Rayleigh waves:  

a) 3D model; b) cross-section near the barrier. 

Figure 5 demonstrates a movie frame related to numerical simulation of a propagating 

seismic Rayleigh wave interacting with a round-shaped vertical barrier; the latter 

completely surrounds the protected region. The ratio of the wavelength to depth of the 

barrier was taken ~0.8. This corresponded to the reference frequency 10Hz and the 

Rayleigh wavelength 20m (speed of Rayleigh wave was 200 m/sec; speed of the transverse 

bulk wave was ~220 m/sec); diameter of the protected region was 120m. Inside the 

protected region reduction of the magnitude of displacements was more than ten times 

comparing to the outside territory.  

3.2. Transverse (horizontal) barrier  

Our analyses revealed that ssimilarly to vertical barriers, the transverse barriers should 

satisfy several conditions to effectively protect from seismic waves: (i) length (horizontal) 

of the barrier should be comparable to the wavelength; (ii) material of the barrier should 

have larger density than the ambient soil for Rayleigh waves; that is in agreement with 

Chadwick’s theorem stating that at the clamped surface of a halfspace, no Rayleigh wave 

can propagate; (iii) material of the barrier should satisfy the opposite Love’s propagating 

condition (4) for protecting from propagating seismic Love waves.  

Considering propagation of Rayleigh waves or other types of seismic surface waves in 

soils subjected to liquefaction, Biot’s theory of poroelasticity can be applied; see Detournay 

E. & Cheng (1993). According to the genuine Biot’s theory, all governing equations are 

linear, that ensures validity of the harmonic wave approach.  
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