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Abstract. Degeneracy of the linear dispersion wave equation at the phase 

velocities coinciding with the bulk wave velocities is observed and 

analysed. Spectral analysis of Pochhammer – Chree equation is performed. 

The corrected analytical solutions for components of the displacement 

fields are constructed, accounting degeneracy of the secular equations and 

the corresponding solutions. 

1.  Introduction  
The paper is devoted to analyzing and correcting solutions of the Pochhammer – Chree 

wave equation at phase velocities coinciding with the longitudinal ( 1c ) and shear ( 2c ) bulk 

wave velocities, at which degeneracy of the Bessel equation occurs. The corrected 

dispersion equations at these phase velocities are constructed, revealing peculiarities in 

polarization of the corresponding Pochhammer – Chree longitudinal waves.  

Since the first derivation of the Pochhammer – Chree equation for harmonic waves 

propagating in a cylindrical rod [1 – 3] and numerous subsequent works [4 – 14] it was 

assumed that the solution of the dynamic equations for harmonic waves in a circular rod 

reduces to the Bessel equations regardless of the phase velocity.  

However, as it will be shown later on, at the phase velocities coinciding with 1c  and 2c  

bulk wave velocities, the corresponding dynamic equations do not lead to Bessel equations, 

and hence, the solutions for the dynamic equations and the dispersion equations should be 

reworked. These solutions will be constructed and analyzed below.  

2.  Principle equations Equation Section 2 
Equation of motion for an isotropic medium at absence of body forces can be represented in 

a form  

2 2 2
1 2div rot rot = ttc c  u u u ,  (2.1) 

where u  is the displacement field, 1 2,c c  are velocities of bulk longitudinal and shear 

waves respectively:  
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1 2
2

,c c
   

 
 

.  (2.2) 

In (2.2) ,   are Lame’s constants, and   is a material density.  

The Helmholtz representation for the displacement field u  yields  

rotu  ,  (2.3) 

where   and   are scalar and vector potentials respectively. In cylindrical coordinates 

representation (2.3) for the physical components of the displacement field, becomes  
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 , (2.4) 

In (2.4) it is assumed that coordinate z  directs along central axis of the rod. It is also 

assumed that the displacement field is axially symmetric, that yields  

0u  .  (2.5) 

Substituting representation (2.3) into equation of motion (2.1) yields  

2 2
1 2,c c     .  (2.6) 

For a plane harmonic wave propagating along axis z , potentials (2.6) can be represented in 

a form  

( ) ( )
0 0( ) , ( )i z ct i z cte e      x x  ,   (2.7) 

where, as before,   is the wave number related to the phase speed c  and circular 

frequency   by equation  

c


  .  (2.8) 

In (2.7) x  is the (vector) coordinate in the cross section of a rod ( ( )   x x n x n ), 

where n  is the wave vector; and z  n x .  

Substituting representations (2.7) into Eqs. (2.6), yields Helmholtz equations for the 

potentials  

2 2
2 2

0 0 0 02 2
1 2

1 0, 1 0
c c

c c

   
             

   
   

  .  (2.9) 

Axial symmetry of 0  ensures [4]  

0 0





.  (2.10) 

2.1. Non-degenerate case 1 2c c c    

If 1 2c c c   ( c  is phase velocity), then Eqs. (2.9) result in Bessel equation for 0  and 

0  potentials. The corresponding solution for the scalar potential has the form  

0 1 0 1 2 0 1( ) ( ) ( )r C J q r C Y q r     (2.11) 

and for the vector potential the corresponding solutions become  
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,  (2.12)  

Herein, , 1,...,8kC k   are unknown (complex) coefficients, and  

2
2 2

2
1 , 1,2n

n

c
q n

c

 
    
 
 

.  (2.13) 

Axial symmetry of potential 0  is satisfied by the following equations [4]  

0r z 
  

  
. (2.14) 

Axial symmetry of the vector potential   imposes another restriction [4]:  

0r z   .  (2.15) 

Now, accounting (2.4), (2.5) (2.12), (2.15), the desired vector field corresponding to the 

propagating longitudinal axially symmetric harmonic wave, becomes [7]:  

   

   

( )
1 1 1 1 2 1 1 3 1 2 4 1 2

( )
1 0 1 2 0 1 2 3 0 2 4 0 2

( ) ( ) ( ) ( )
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( ) ( ) ( ) ( )
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z
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 

       



      

.  (2.16) 

Since components (2.16) vector field should be finite at 0r   and noting that at 0r   

Bessel’s functions 0 1,Y Y  are unbounded, the final representation flows out from (2.16)  

 

 

( )
1 1 1 1 3 1 2

( )
1 0 1 2 3 0 2

( ) ( )

0

( ) ( )

i z ct
r

i z ct
z

u q C J q r i C J q r e

u

u i C J q r q C J q r e

 



 

   



  

. (2.17) 

2.2. Degenerate case, 1c c   

At 1c c  Eqs. (2.9) become  

2
21

0 0 02
2

0, 1 0
c

c

 
       

 
 

  .  (2.18) 

Now, the first Eq. (2.18) yields  

0 1 2( ) lnr C C r   ,  (2.19)  

Taking into account conditions (2.14), (2.15), and solutions (2.19), (2.12), the desired 

components of the axially symmetric displacement field become  

 

   

1 ( )
2 3 1 2 4 1 2

( )
1 2 2 3 0 2 4 0 2

( ) ( )

0

ln ( ) ( )

i z ct
r

i z ct
z

u r C i C J q r C Y q r e

u

u i C C r q C J q r C Y q r e

  



 

    
 



      

.  (2.20) 

And accounting that for a solid cylinder the corresponding displacement fields should be 

finite at 0r  , Eqs. (2.20) by taking 2 0C   transform into  
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3 1 2
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  
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.  (2.21) 

2.3. Degenerate case, 2c c   

At 2c c  Eqs. (2.9) become  

2
22

0 0 02
1

1 0, 0
c

c

 
        

 
 

 .  (2.22) 

That in view of conditions (2.14), (2.15) yields the following solution for component 

( )r   

1
3 4( )r C r C r   ,  (2.23)  

Taking into account Eqs. (2.4), components of the required displacement field become  

   

 

1 ( )
1 1 1 1 2 1 1 3 4
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
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.  (2.24) 

 

And accounting that for a solid cylinder the corresponding displacement field should be 

finite at 0r  , results in  

 

 

( )
1 1 1 1 3

( )
1 0 1 3

( )
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( ) 2
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i z ct
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u

u i C J q r C e

 



 
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.  (2.25) 

 

Remark 2.1. It should be noted that the similar degeneracy occurs for Lamb waves in a 

plate at the phase velocity c  coinciding with 1c  and 2c  velocities. For example, at 2c c  

one of components of the vector potential reduces to  

1 2( )x C C x      (2.26) 

instead of solution in hyperbolic functions at 2c c  [11]: 

1 2( ) sinh( ) cosh( )x C x C x         (2.27) 

where the multiplier   is defined by the following expression  
1/2

2 2
21 /c c   , see 

[11].  

3.  Degenerate dispersion equations at 1 2,c c  phase velocities 

Equation Section (Next) 
The traction-free boundary conditions on a lateral cylindrical surface at r R  have the 

form  

 (tr ) 2 0
r R

     t ν ν   ,  (3.1) 

where   is the (outward) surface normal.  
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3.1. Dispersion equation at non-degenerate case 1 2c c c    

Substituting displacement components (2.17) into boundary conditions (3.1), 

yields the following equations written up to the exponential multiplier 
( )i z cte  

  

 
 

 

 

2 2
1 0 1 1

1 1 1 0 1 1 1

3 2 0 2 1 2

1 1 1 1 3 1 2

2
1 1 1 1 2 3 1 2

( )

2 0( ) ( )2

( ) ( )

( ) ( )
2 0

( ) ( )

rr rr

r R

rz rz

r R

q J q r C

t I q C q rJ q r J q r

r i C q rJ q r J q r

i q C J q r i C J q r
t

i q C J q r q C J q r







    
 
            
      

   
     

    
  

.  (3.2) 

Equations (3.2) can be rewritten in a matrix form  

1

3

0,
C

C C
C

 
    

 
A ,  (3.3) 

where A  is a square and non-symmetric 2 2  matrix with complex coefficients:  

 

 

 

2
2 2 21 1

11 1 0 1 1 12
2

12 2 0 2 1 2

21 1 1 1

2 2
22 2 1 2

2
2 ( ) ( )

2
( ) ( )

2 ( )

( )

c q
A q J q R J q R

Rc

i
A q RJ q R J q R

R

A i q J q R

A q J q R

 
       

 
 


  

  

   

.  (3.4) 

At deriving (3.4) from (3.2) the following identity was used  

2
1
2
2

2
c

c


 


.  (3.5) 

Now the desired dispersion equation can be represented in the form  

det 0A .  (3.6) 

Two-dimensional (right) eigenvectors related to vanishing eigenvalues (kernel 

eigenvectors) of matrix A  define polarization of the corresponding Pochhammer – Chree 

waves.  

Substituting components (3.4) into Eq. (3.6) yields the dispersion equation in the form 

[7]  

 

 

2 2 21
1 2 0 2 1 1 2 1 1 1 2

2
2 2 2 2 21
2 1 0 1 1 22

2

2
( ) ( ) ( ) ( )

( ) 2 ( ) ( ) 0

q
q q J q R J q R q J q R J q R

R

c
q q J q R J q R

c

    

 
        

 
 

.  (3.7) 

3.2. Dispersion equation at degenerate case 1c c   

In view of Eqs. (2.21), the surface traction components at r R  become  
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 

 

1
2 0 2 1 2 3

2 2
2 1 2 3

2 2 ( ) ( ) 0

2 ( ) 0

rr rr
r R

rz rz
r R

t I i q J q r r J q r C

t q J q r C








          
 

       
 

.  (3.8) 

Suppose initially that 0 , then direct analysis of Eq. (3.8)2 reveals that either 

1 2( ) 0J q R   or 
2 2
2 0q    . The first option is inconsistent with Eq. (3.8)1, as Bessel 

functions 0J  and 1J  have no common roots. The second option in view of (2.13) means  

2 2
1 22c c ,  (3.9) 

or 2 1q  . Note, that the case 0  at this stage is not considered. But, condition (3.9) 

means a very specific material with vanishing Poisson’s ratio, that flows out from analyzing 

expressions (2.2). Now, assuming that (3.9) takes place, Eq. (3.8)1 yields the following 

equation  

1
0 1( ) ( )J R R J R ,  (3.10) 

which satisfies at some specific values of the radius R  independently of 0 . Thus, the 

case (3.9) at 0  does not lead to any meaningful dispersion relation.  

Suppose now that 0 , then direct analysis of Eqs. (3.8) reveals that in such a case 

both equations are satisfied identically, ensuring that a pair  

 10; c c    (3.11) 

satisfies the dispersion relation and that is the unique solution irrelevant of physical 

properties. Thus, at 1c c  all the dispersion curves vanish.  

3.3. Dispersion equation at degenerate case 2c c   

In view of Eqs. (2.25), the surface traction components at r R  become  

 

 
 

2 2
1 0 1 1 3

1
1 1 0 1 1 1 1 3

1 1 1 1 3 1 1 1 1

( ) 2 ( 1)

2 0

2 ( ) ( )

2 ( ) ( ) 0

rr rr

r R

rz rz r R

q J q r C i C

t I

q q J q r r J q r C i C

t i q C J q r i C r i q C J q r








       
  

       
      
  

           

. (3.12) 

And, the corresponding matrix dispersion equation takes form (3.6), or if expanded, it 

becomes  

2 2
2 2 21 1

1 0 1 1 1 13 3
2 2

2 ( ) ( ) 2 (3 4 ) 2 ( 1) ( ) 0
c c

R q J q R q i i J q R
c c

   
           

   
   

 (3.13) 

Presumably, the most interesting is disappearing all the terms not containing Bessel 

functions in the resulting Eq. (3.13).  

4 Conclusions  
The exact solutions of the linear Pochhammer – Chree equation for propagating harmonic 

axisymmetric longitudinal waves (0, )L m  in a cylindrical body, were analyzed, revealing 

that at the phase velocities coinciding with the bulk wave velocities 1c  and 2c , the 

Pochhammer – Chree equation becomes degenerate leading to solutions involving functions 

other than Bessel.  
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At these phase velocities the correct dispersion equations were constructed and 

analyzed; see Eqs. (3.8) and (3.13). It was observed that at 1c c  the corresponding 

dispersion equation has no solutions except a trivial pair  10; c c  , while at 2c c  

the corrected dispersion equation contains non-trivial solutions.  

Spectral analysis of the correct dispersion equation at 2c c  enabled constructing 

analytical expressions for components of the displacement field; see Eqs. (4.11) and (4.12). 

It should also be noted that the similar degeneracy at the bulk wave velocities occurs for 

propagating Lamb and SH waves; see [15 – 16].  
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