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Abstract. A mathematical model for analyzing Lamb waves propagating 

in stratified media with arbitrary elastic anisotropy is worked out. The 

model incorporates a combined Fundamental Matrix (FM) and Modified 

Transfer Matrix (MTM) methods. Multilayered unbounded plates with 

different types of boundary conditions imposed on the outer surfaces are 

considered. Closed form fundamental matrices and secular equations for 

dispersion relations are derived. 

1.  Introduction  
The genuine Lamb waves [1] are surface acoustic waves propagating in an unbounded 

isotropic homogeneous plate subjected to traction-free boundary conditions at the outer 

planes: 
The genuine Lamb waves [1] are surface acoustic waves propagating in an unbounded 

isotropic homogeneous plate subjected to traction-free boundary conditions at the outer 

planes: 
0

( , ) ( , ) 0
x

x h
t t




   xt x C u x  . (1.1) 

In (1.1) t  are surface tractions,   is the unit normal to one of the boundary planes, C  is 

the fourth order elasticity tensor (in the original Lamb’s analysis tensor C  was isotropic), 

u  is the displacement field, t  is time, 

x  x   (1.2) 

is the coordinate normal to the plane 0x   , and h  is the depth of a plate; see, Fig.1, 

where n  is the unit vector normal to the wave front. 

We shall also consider clamped boundary planes: 
0
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and mixed boundary conditions for the traction-free upper plane and clamped bottom plane: 
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For a multilayered plate, the interface boundary conditions are conditions of the ideal 

mechanical contact: 
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where index n  is referred to the corresponding layer. Equations (1.5) are written in the 

local coordinate systems with origins placed at the upper boundaries of the corresponding 

layers. 

Regarding polarization (that is the direction of particle motion at the wave front), the 

genuine Lamb wave resemble Rayleigh wave [2], which propagate in a halfspace with the 

traction-free boundary condition at the boundary plane, but Lamb wave differ from 

Rayleigh wave in absence of necessity to impose Sommerfield’s emission condition:  
1

( , ) ( ),t O x x

  u x . (1.6) 

Sommerfield’s condition (1.6) is used to remove solutions for Rayleigh waves that do not 

attenuate with depth, as being physically unreasonable.  

Generally, Lamb wave in a particular layer is sought in the form  [3 – 6]: 
6
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where kC  are the unknown complex coefficients defined up to a multiplier from the 

boundary or interface conditions (1.1) – (1.5); km  are the unknown polarization vectors; 

kf  are also unknown scalar complex-valued functions; the exponential multiplier 
( )ir cte  n 

 

corresponds to propagation of the plane wave front along direction n  with the phase speed 

c ; r  is the wave number; dimensionless coordinate x  in (1.7) is defined by 

x irx  . (1.8) 

In most of the works on surface acoustic waves a problem of constructing the displacement 

field (1.7) is not considered. Instead, by satisfying all the boundary and interface 

conditions, the disperse relations between the phase speed c  and wave number r  are 

derived either analytically for single-layered plates [7, 8], or numerically for multilayered 

plates [9 – 13]. Quite often relations c r  are replaced by relations c , where   is the 

frequency: 

rc . (1.9) 

However, even for a simpler problem of finding disperse relations, polarization vectors km  

and displacement distribution functions kf  need generally to be constructed. Vectors km  

are either genuine or generalized eigenvectors of the Christoffel equation, introduced later. 

Analogously, functions kf  are eigenfunctions of an ordinary differential equation, to which 

the Christoffel equation is the characteristic equation.  

Herein, an alternative approach will be introduced, which removes necessity to create 

and analyze vectors km  and functions kf . This approach is based on constructing the 

fundamental matrix for a system of the first-order differential equations and finding 

eigensolutions for the Sturm-Liouville problem; see also [14, 15], where a method based on 

constructing the fundamental matrix and utilizing Stroh’s six-dimensional formalism [16], 
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was used for studying Flouqet’s problem for periodically layered composite plates. In the 

present paper a different six-dimensional formalism developed in [17, 18] will be used. 

Applying this formalism will allow us to obtain closed form fundamental matrices and 

secular equations for Lamb waves propagating in multilayered plates with arbitrary elastic 

anisotropy.  

2.  Governing equations Equation Section 2 
All the regarded layers are assumed to be homogeneous, anisotropic, and linearly 

hyperelastic. Equation of motion for homogeneous anisotropic elastic medium can be 

written in the form: 

( , ) div 0t     x x xL u C u u , (2.1) 

where   is the material density, and C  is the elasticity tensor assumed to be positive 

definite: 

3 3( ), 0 , , ,

( ) 0ijmn

ij mn
sym R R i j m n

S C S
  

    
S A

S S C S . (2.2) 

Condition (2.2) ensures strong ellipticity of tensor C : 

3, , , 0

, 0
R 

     
a b a b

a b a b C b a . (2.3) 

The latter condition is equivalent to positive definiteness of the acoustic tensor  

( )   A b b C b  (2.4) 

at any 
3, 0R b b . 

2.1. 3D-formalism  

Now, we outline a formal procedure for finding the unknown polarization vectors km  and 

functions kf . Substituting representation (1.7) into Eq. (2.1) yields a system of the second-

order matrix equations with respect to functions k kfm  : 

 2

1 2 3( ) 0t

x x k kf       A A A A m , (2.5) 

where 
2

1 3, , c         A C A C n A n C n I   . (2.6) 

 

Assuming functions kf  to have Euler’s exponential representation 

( ) kir x

kf x e
   (2.7) 

with the unknown parameters k  (these are sometimes called the Christoffel parameters) 

and substituting this representation into Eq. (2.5), we arrive at the Christoffel equation: 

 2

1 2 2 3( ) 0t

k k k      A A A A m . (2.8) 

The latter equation reveals that exponential parameters k  are roots of a polynomial of the 

sixth degree with respect to k : 

 2

1 2 2 3det ( ) 0t

k k     A A A A . (2.9) 

On obtaining the Christoffel parameters from Eq. (2.9), we can find polarization vectors 

km  as the eigenvectors of a matrix in the left-hand side of Eq. (2.8).  
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Remark 2.1. If a matrix in the left-hand side of Eq. (2.8) has Jordan blocks (this case is 

known as the non-semisimple degeneracy), then representation (2.7) becomes insufficient. 

Within framework of both 3D and 6D-formalisms this case was studied in [19]. □ 

2.2. 6D-formalism 

Now it will be demonstrated that the preceding stage of finding the Christoffel parameters 

k  and polarization vectors km  can be avoided.  

Let  

( ) ( )

( ) ( )

k k k

k x k

x f x

x x

 

 

f m

v f
 (2.10) 

be two vector-valued functions. Representation (2.10) ensures that these functions are 

dimensionless and have the same orientation in 
3R . With these functions Eq. (2.5) can be 

represented in a form of a six-dimensional system of ordinary differential equations of the 

first order: 

ˆˆ ˆ( ) ( )k k

d
x x

dx
  


z G z , (2.11) 

where ˆ ( )k xz  is a six-dimensional vector:  

( )
ˆ ( )

( )

k

k

k

x
x

x

 
   

 

f
z

v
 (2.12) 

and Ĝ  is a 6 6  matrix: 

1 1

1 3 1 2 2

ˆ
( )t 

 
  

     

0 I
G

A A A A A
. (2.13) 

In (2.13) 0  is the zero and I  is the identity 3 3  matrix.  

PROPOSITION 2.1. Matrix Ĝ  is not singular, provided  

 2

3

1
Spc 


A , (2.14) 

where Sp  denotes spectrum of the corresponding matrix. 

Proof. The proof flows out from considering the determinant of matrix Ĝ : 

 1 1

1 3 1 3
ˆdet( ) det det( )det( )   G A A A A (2.15) 

and since matrix 1A  is not singular, due to assuming positive definiteness of the elasticity 

tensor, condition (2.14) follows from expression (2.6) for 3A .□ 

As is known from the theory of ordinary differential equations [20, 21], the solution of 

Eq. (2.11) satisfying Cauchy’s initial conditions at some value 0x , can be represented in a 

form: 

0 0
ˆˆ ˆ( ) ( )x x x    z R z , (2.16) 

where R̂  is the fundamental matrix (fundamental system); see [21, Ch. IV, §2, n.4]: 

0
ˆ ( )

0
ˆ ( )

x x
x x e

   
G

R  (2.17) 

and 
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0

0

0

ˆ
 

  
 

f
z

v
 (2.18) 

is a 6-dimensional vector specifying the initial conditions at 0x .  

Remark 2.2. The solution in a form (2.16) is valid for any non-singular matrix Ĝ , 

regardless of its (semi)simplicity or non-semisimple degeneracy; see [20, Ch. IV, §5]. □ 

3.  Solution for a homogeneous layer Equation Section 3 

3.1. Traction-free plate 

Boundary conditions (1.1) can be rewritten in terms of convolution of a special 3 6  

matrix composed of matrices (2.6) and vector ˆ( )xz :  

   
0

0

2 1 1 2
ˆ; ( ) ( ) ( ) 0

x
x

x irh
x irh

x x x


 

       A A z A v A f . (3.1) 

Substituting expression (2.16) for the vector ˆ( )xz  into conditions (3.1) and taking 

0 0x  , we arrive at the following equation:  

2 1

0

2 11 1 21 2 12 1 22

ˆ 0
 

  
      

A A
z

A R A R A R A R
, (3.2) 

where ijR  are 3 3 -matrix components of the fundamental matrix R̂  at x irh   . 

Existence of a non-trivial 6-dimensional vector 0ẑ  satisfying Eq. (3.2) is equivalent to 

vanishing the following determinant: 

2 1

2 11 1 21 2 12 1 22

det 0
 

 
      

A A

A R A R A R A R
. (3.3) 

The last equation can be rewritten in a form of vanishing the determinant of the third-order: 

 right

left
ˆdet 0  B R B , (3.4) 

where 

  right

left 2 1 1

1 2

, ,


 
   

  

I
B A A B

A A
. (3.5) 

Equation (3.4) is the secular equation for a traction-free plate. 

3.2. Clamped plate 

Boundary conditions (1.3) can be rewritten in terms of convolution of a special 3 6  

matrix and vector ˆ( )xz :  

 
0

0
ˆ; ( ) ( ) 0

x
x

x irh
x irh

x x


 

   I 0 z f . (3.6) 

Substituting expression (2.16) for the vector ˆ( )xz  into conditions (3.6) and taking 

0 0x  , we arrive at: 

0

11 12

ˆ 0
 

  
 

I 0
z

R R
. (3.7) 
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As before, components ijR  are 3 3 -matrix components of the fundamental matrix R̂  at 

x irh   . Existence of a non-trivial 6-dimensional vector 0ẑ  satisfying Eq. (3.7) is 

equivalent to vanishing the determinant: 

11 12

det 0
 

 
 

I 0

R R
. (3.8) 

The latter equation admits representation in a form of Eq. (3.4) with  

  right

left , ,
 

   
 

0
B I 0 B

I
. (3.9) 

3.3. Plate with mixed boundary conditions 

By analogy with Eqs. (3.2) and (3.7), boundary conditions (1.4) yield:  

2 1

0

11 12

ˆ 0
 

  
 

A A
z

R R
. (3.10) 

It can be shown that Eq. (3.10) can be represented in a form (3.4) with 

  right

left 1

1 2

, ,


 
   

  

I
B I 0 B

A A
. (3.11) 

Remark 3.1. a) Thus, dispersion relations for Lamb waves propagating in a single 

layered plate with the considered three types of boundary conditions, satisfy the unique 

secular equation (3.4) with different matrices 
right

left ,B B .  

b) Problems and algorithms for numerical evaluation of a matrix exponential are 

discussed in [22 - 25]. □ 

4.  Solution for a layered plate Equation Section 4 
Let a multilayered plate consists of N -layers, Fig. 2. The lower index n  will be referred 

to the corresponding layer.  

Assuming ideal mechanical contact at the interfaces and taking into account non-

degeneracy of matrix 1A , Eqs. (1.5) can be replaced by equations of continuity of the 

solution of Eq. (2.16) across the interfaces: 

1
ˆ ˆ(0) ( ), 1,..., 1n n nirh n N    z z . (4.1) 

Equations (4.1) are written in local coordinate systems with origin at the upper boundary of 

each layer. Conditions (4.1) allow us to represent ˆ ( )N Nirhz  in terms of vector 0ẑ , which 

specifies initial conditions at the upper boundary, and convolution of the fundamental 

matrices: 

0
ˆˆ ˆ( )N Nirh  z R z , (4.2) 

where 

1 1
ˆ ˆˆ ...N Nir h ir he e

   
G G

R . (4.3) 

Remark 4.1. a) Matrix R̂  plays role of the transfer matrix, as it transfers initial values 

0ẑ  at 0x   to ˆ ( )N Nirhz . Within framework of the 3-dimensional formalism applied to 

surface wave analysis, the transfer matrices were introduced in [26, 27]; see also [28 – 30], 

where different modifications of the transfer matrix method are suggested to improve 

numerical stability. 

b) It should be noted that generally  
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 1 1
ˆˆ ˆ

...
n nN N

ir hir h ir he e e
    

GG G
, (4.4) 

because of the non-commutative property of matrices ˆ
nG .  

c) However, matrices ˆ
nG  and ˆexp( )nG  commute, whatever matrix ˆ

nG  may be.□ 

Now, by applying boundary conditions to Eq. (4.2), the secular equation for dispersion 

curves in a multilayered plate takes form (3.4) with matrix R̂  defined by (4.3), and the 

auxiliary matrices 
right

left ,B B  defined by (3.5) for a traction-free plate, by (3.9) for a 

clamped plate, and by (3.11) for a plate with mixed boundary conditions.  

5.  Conclusions  
The Cauchy six-dimensional formalism is developed for analysing propagation of Lamb 

waves in anisotropic multilayered plates. Comparison with the formalism, known as the 3D 

formalism, is done, revealing the anticipated benefits of the Cauchy formalism in respect of 

its ability to construct the closed form dispersion equation and the corresponding solution 

for dispersion curves.  
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