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Abstract. The problem of stability of colloids recently begins to attract 

extra attention in construction materials science. This is due to numerous 

attempts to employ different kind of nanoscale modifiers for production of 

building materials with enhanced operational properties. Problems of 

stability and coagulation in colloidal dispersions are studied for several 

decades, and numerous results were already obtained within framework of 

Smoluchowski coagulation theory. In the present work we have performed 

numerical study of the flocculation process and compared the results with 

well-known ones. It was shown that even for complex pairwise potential 

the kinetics of number density for isolated particles is not very different 

from the kinetics which corresponds to constant coagulation kernel. 

However, for number density of many-particle aggregates we have 
observed number of peculiarities, including semi-periodic behavior. 

1. Introduction 

Problems of stability and coagulation in dispersions are studied since early XX. The 

importance of these problems is due to the fact that dispersions are widespread both in 

nature and in technology. 

Considering materials science of building materials, it must be noted that both 

compositions and hardened building materials in most cases are dispersions: the dispersion 

medium either water or liquid organic matrix material (asphalt, thermoplastic or 

thermosetting polymer); dispersed phases are hydration products, fine fillers and coarse 

grained aggregates. Thus, the general problem of stability is quite relevant in construction 

materials science. 

The problem of stability of colloids recently begins to attract extra attention in materials 

science of building materials [1-3]. This is due to numerous efforts directed to the 

enhancement of building materials by means of nanotechnology [4-7], including application 

of modifiers that are based on so-called “primary nanomaterials” – 1D/2D nanoobjects 

which were synthesized in predefined conditions outside of the composition [8-10]. Such 

objects can be multi-walled carbon nanotubes, nanoparticles of oxides – TiO2 (in anatase 

form), ZnO, etc. The goal of nanomodification can only be achieved if the particle is 

homogeneously distributed and stabilized in form of nano- or micro-suspension. 

Design and discovery of materials guided by theory and computation is the current trend 

in construction materials science [11, 12]. To adequately represent the system with 
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nanoscale objects, it is possible to use particle systems with properly defined pairwise and 

boundary forces [13, 14]. Specific form of potentials and numerical values of parameters in 

their analytical expressions can both be drawn from surface science. There are also 

numerous results already obtained in the framework of Smoluchowski coagulation theory. 

The goal of the present work is to numerically study the flocculation process for model 

system and to compare the results of numerical experiment with well-known results from 

coagulation theory. 

2. Prior work 

The stability of colloids can be analyzed from several points of view. Potential of pairwise 

interaction was derived DLVO [15, 16] theory: 
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where  and 0 are permittivity and vacuum permittivity,  is the inverse screening length, 

d is the potential of double layer, R1 and R2 are radii of spherical particles, r is the distance 

between particles and A is the Hamaker constant: 
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where Na is the Avogadro constant, b is van der Waals constant and vm is molar volume. 

With some assumptions, kinetics of coagulation can be studies without taking into 

account particle dynamics in form of (1). It was done by M. von Smoluchowski [17]; the 

obtained equation describes number  tNn  of n-particle aggregates 
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where kij is the coagulation kernel. 

System (3) can be solved analytically in case of constant constkkij   kernel: 
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thus, the dependencies  tNn  for any n > 1 are with single maxima. 

3. Modeling method 

Expressions (1) and (2) allows to estimate energies which correspond to repulsion (first 

term in (1)) and attraction (second term) forces. The estimation can later be used during 

modeling of particle dynamics at nanoscale. It can be also noted, that adequate results can 

be obtained even if pairwise potential is modeled by different expression, e.g. by sum of 

Morse and one-term Mie potential: 
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where U1 and U2 are (approximate) depths of potential wells, rm,1 and rm,2 are (approximate) 

distances to minima, rw,1 and rw,2 are widths of potential wells and d is the distance between 

surfaces. 

The proposed potential curve (5) is shown on Fig. 1. Thick line corresponds to (5) while 

thin ones correspond to its first and second terms. 

 

Fig. 1. Potential with two minima suitable for modeling the stability of colloids ( kTU 101  , 

31, mr  nm, 41, wr  nm, kTU 52  , 202, mr  nm, 22, wr  nm). 

Investigation of flocculation was performed for system with the following parameters: 

1. Particle size probability density: 

        nmRnmRnmRRf 701.0504.0305.0   . (6) 

2. Densities of the particle and dispersive medium are almost equal to each other and are 

near to 1000 kg/m
3
. 

3. The viscosity of dispersive medium is non-zero, but set to quite low value to decrease 

the characteristic times (which otherwise will be six orders of magnitude higher). 

4. The values of distances and energies of (7) are set to appropriate values according to 

DLVO theory. 

5. The 512 particles were uniformly (in every coordinate) distributed in spherical 

domain with radius 5 mkm. 

For the numerical solution of Cauchy problem we have used the software developed in 

our university. Design goals and primary features of the software were briefly mentioned 

earlier [14, 18, 19]. 

4. Results and discussion 

During modeling of the dynamics, several scalar values were registered. Among them: 

1. Number Nl of particles in largest aggregate (Fig. 2). 

2. Average and standard deviation of number Np of neighbor particles – particles which 

are close than the predefined small distance (Fig. 3). 

3. Average distance (and its standard deviation) to four closest neighbors (Fig. 4). 
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4. Amount Nn of n-particle aggregates. For n = 1, 2 and 3 such dependencies are 

presented on Fig. 5 and 6. 

 

Fig. 2. Number of particles in largest aggregate. 

 

Fig. 3. Average and standard deviation (dashed) of number of neighbors. 
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Fig. 4. Average and standard deviation (dashed line) of distance to four closest neighbors. 

 

Fig. 5. Number of isolated particles. 
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Fig. 6. Number of 2-particle (solid line) and 3-particle (dashed line) aggregates. 

As it follows from Fig. 2, with selected parameters of pairwise potential and spatial 

distribution, all particles are quickly forms several separated aggregates (Fig. 7). The 

dependence on Fig. 3 indicates dense packing within each aggregate. The low value of 

standard deviation of Np reflects regular structure of aggregates (Fig. 4, Fig. 8). 

 

Fig. 7. Final positions of particles. 

 

Fig. 8. Aggregates. 

The dependence on Fig. 5 corresponds to the solution (4) of Smoluchowski equation for 

n = 1: 
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Both the curve on Fig. 5 and solution (7) are monotonically decreasing functions whose 

asymptotic values are zeros. It is possible to apply regression modeling to source data of 

Fig. 5 and construct the biparametric model: 
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The obtained parameters are: 582a , 35.17b  s. The fitted curve (Fig. 9) is in good 

correspondence with numerical experiment, though the value of a parameter is a bit higher 

than the number of particles in system. Thus, Smoluchowski equation with constant 

coagulation kernel is only an approximate model for the system under consideration. 

 

Fig. 9. Fitting  tN1  experimental data with model (8) that is the solution of Smoluchowski equation. 

The latter statement is fully confirmed by the dependencies on Fig. 6. While solution (4) 

predicts one wide maximum and monotonic decrease, the obtained dependencies  tN2  and 

 tN3  are far from monotonic after their maxima. Moreover, we can observe the 

similarities in distances between sequential maxima. To highlight the latter peculiarity, the 

Fourier transforms and frequency spectra of data on Fig. 6 can be calculated. The low-

frequency part of the spectrum for  tN2  is shown on Fig. 10. 

 

Fig. 10. Frequency spectrum of  tN2 . 

As it follows from Fig. 10, even for system with only 512 particles, there is a distinctive 

single maximum near 0.03 Hz frequency (corresponding period 302 T  s). Thus, Fig. 10 

confirms the quasi-periodic character of two-particle aggregate forming. Both reason and 

consequences of this effect still need exploration. 
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5. Summary and conclusion 

Particle systems are reasonable representations of both compositions and composites in 

constructional material science [20]. In this work we have presented several novel results of 

the flocculation modeling. The obtained data allow not only to visualize the spatial 

configurations, but also to reveal many topological properties of the formed structures and 

to compare the results with well-known solutions of Smoluchowski equation. 

It is shown that for quite complex pairwise potential the kinetics of number density for 

isolated particles is similar to kinetics for constant coagulation kernel. However, in case 

multi-particle aggregates, number density changes in complex, semi-periodic manner. This 

observation still needs further study. 

This work is supported by Ministry of Science and Higher Education of Russian 

Federation, project “Theoretical and experimental models of functional composites based 

on prime nanomaterials” 7.6250.2017/8.9 
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