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Abstract. The research identifies the optimality criterion of the 

technological process of the coextrusion molding of polymer-concrete 

building structures in the form of volumetric capacity as the correlation 

between forms quantity and technological cycle time. The set of 

parameters value constraints is made. The set consists of kinematic 

constraints, extruder’s maximum power constrain, maximum motor torque 

constraint for the extruder trouble-free operation, constraint on the stress 

rate of the shift between layers, constraint on product cooling time, and 

minimum melt viscosity constraint. As a result, the task of coextrusion 

molding process improvement reduces to the task of linear programming. 

With the help of mathematical modelling the dynamics of cooling process 

of the preform in the mould is studied. The paper scrutinizes the influence 

of bulging pressure on the plybond strength in the multilayer polymer 
system in the manufacturing process of different capacity items. 

1. Introduction 

The technology of the coextrusion processing of primary and second polymer materials and 

concrete mixes is quite a complex process. While studying the process it is necessary to 

take into consideration a significant amount of technological factors and phenomena which 

influence process-dependent parameters and design factors of the process [1-3]. 

Therefore, a mathematical model of coextrusion molding process is necessary for 

making coextrusion machines on the basis of this technology and identifying optimum 

process-dependent parameters of their functioning. 

A modern specialist, working a machinery complex which performs the coextrusion 

processing of polymer and concrete mixes, has to master the methodology and algorithms  

of doing these optimization tasks of choosing the optimum process condition. This becomes 

especially topical while operating expensive programmatically controlled plant [4-5], but 

setting the optimum process condition is implemented on the basis of knowing the physics 

process of coextrusion of polymers and concrete mixes, task mathematical modelling, 

application of computational algorithms search for the solution. 
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During the coextrusion processing there always appear tasks of choosing the most 

effective solution variant out of the range of technically (technologically) acceptable ones 

[6-7]. While planning the technological process of manufacturing the product, these tasks 

acquire particular forms connected with the choosing of process-dependent parameters for a 

definite machine, materials, and a product being manufactured. 

2. Methods 

The developing mathematical model allows classifying the initial optimization task as the 

mathematical programming task which, depending on the limit type and the target function, 

can be done by using the methods of linear programming. 

3. Results 

Any technological process must be effective (optimum), i.e. the best one from the position 

of the chosen optimality criterion Ko. At the same time, various limit type requirements, 

which form the region of feasibility, must be met. For a definite technological process 

variant of the coextrusion processing of polymers and concrete mixes such a thesis means 

the necessity of calculating the optimum condition of the coextrusion processing, i.e. the 

search for optimum value of metrics X of the technological process. 

Apart from the metrics of the technological process, there is a range of phase parameters 

Y which are the function of the metrics (motor’s instantaneous output torque, drive power, 

shear stress in a polymer-concrete preform and others). Besides, the mathematical model of 

the process includes the metrics V – coefficients of equations and other constants for the 

current task [8]. 

All the limitations are presented as a system of inequalities, each of them gives the 

acceptance limits of the variation of the relevant phase or the required parameter (for 

example, the maximum of auger rotation frequency,  the overload capacity of shear stress, 

etc). Analytically it can be put down as follows: 

 

            .YYY,XXX
maxjjminjmaxiimini

            (1) 

Optimality criterion is the function of the initial and required parameters: 

         .YX,KK
oo

              (2) 

 

They suppose, that this criterion has to be either maximized, or minimimized. The 

search for the vector of the required parameters, bringing the maximum (minimum) size of 

test Ко, is done on some range of feasible solutions.  

The main purpose of the coextrusion machine is the processing of primary, second 

polymer raw materials and concrete mix for getting new high quality products with a high 

production process.  

For the coextrusion molding process the following optimality criterion is proposed:  

       max


p
QK

o
,            (3) 

where   Q – the volumetric capacity; 

р – the quantity of forms; 

τ – the cycle time of machine working. 

The process is optimal when the optimum criterion Ко tends to the maximum in the 

sphere of process-dependent parameters limitation.  
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The scrutiny of the optimum criterion shows that the criterion does not have extrema, 

i.e. it is monotonous. Thus, to find the optimal factors of the coextrusion molding it is 

necessary to research the size of test on the edge of the limit region.  

During the research we exposed the following limits on the technological parameters 

value:  

A. Kinematic constraints of minimum 
min

n  and maximum 
max

n  rotation frequency of the 

extruder drive (N), correspondingly, as the following inequalities: 

 

       
min

nN  , 
max

nN  .           (4) 

 

Transformation of constrains (4) into efficiency constrains brings to the inequalities of 

the following type: 

min
nzQ

n
 ,  

max
nzQ

n
 ,           (5) 

 

where 
n

z  – the coefficient depending on the geometrical shape of the extruder and the 

head: 














K

K
z

n
,             (6) 

where  - the coefficient of the forward flow of the extruder, 

           - the coefficient of the reverse flow of the extruder. 

B. Constraint according to the maximum extruder power: 

 

eengр CEZZ  ,            (7) 

where Zp– power needed in the process of extrusion, 

           Zeng – engine power, 

           CEe – the extruder drive coefficient of efficiency. 

The power needed in the process of coextrusion of multilayer polymers is identified 

according to the empirical dependence [9]: 

 

   


Kz

m

eNm
Z

n

n

o

TT

o

p

o

87,1
)416,31(14,0 1

)(01,02








,          (8) 

where 
K  – the coefficient of geometric shape of the head, 

           
o

m  –the viscosity constant, 

           
0

T  – the temperature measuring of viscosity constant, 

           n  – the melt yield index. 

After the substitution (8) in (7) we get the inequality: 

 

       
eeng

n

n

o

TT

o CEZ

Kz
m

eNm o









87,1
)416,31(14,0 1

)(01,02

.         (9) 

We transform the inequality (9), leaving the variable N on the left side: 
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em
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mCEZ

N
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



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





 .        (10) 

C. Constraint of maximum motor torque for the extruder trouble-free operation: 

 

рe MM  ,          (11) 

where Me – the maximum motor torque on the auger shaft of the extruder; 

           MP – the working torque of the extruder. 

The expression for identifying the working torque on the auger shaft of the extruder can 

be obtained by reducing the dependence on extrusion power calculation (8) to the torque 

moment and rotation frequency 


N
MZ

pp




30
 [10]: 

 






















Kz
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n

n

o

TT

o

p

o

87,1
)416,31(14,030 1

)(01,0

.        (12) 

After identifying the dependence for 
р

M , we obtained the following ineaquality: 

 

      



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
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.        (13) 

We transform the inequality (13), leaving the variable N on the left side: 

 

)(01,0

1 87,1
)416,31(14,030

oTT

o

n

n
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em

Kz
mM

N








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







 .       (14) 

D. Constraint on the stress rate of the shift between layers. 

To guarantee the quality of the product it is necessary to meet the conditions: 

 

 ][ ,           (15) 

where ][  – critical stress of the shift 
n

zN

Q






2
][  [11]; 

              – the stress of the shift on the polymer pipe surface. 

The stress of the shift on the polymer pipe surface is defined by the following 

dependence [12]: 

  
 oTT

o

n

n em
rRrR

n
Q


































01,0

2
2

2
1

2


 ,        (16) 

where R  – the outer radius of the output cross-section; 

           r  – the internal radius of the output cross-section. 

After the identification of the dependence for   and the substitution together with the 

temperature processing into the inequality (15) we obtained: 
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E. Constraint on the product cooling time. 

To guarantee the molding process continuity the correspondence between the cooling 

time of the product 4  in the blown mould, the time of getting the polymer-concrete 

preform 1  and the amount of moulds р are needed: 

1
4





р

.           (18) 

The dynamics of the product cooling process is described by the following expression 

[13]: 
3

41

2

24
1






















x

TT

TT
,         (19) 

where T  – the temperature of the preform; 

          
1

T  – the temperature of the cooling mould wall; 

          
2

T  – the final cooling temperature; 

          x  – the thickness of the product; 

           – the heat conductivity coefficient; 

After the transformation of the given expression into the dependence for defining 4  

we obtain: 

 24

1

2

3

1

2

4




























TT

TT

x
.        (20) 

The time of polymer stocking getting 1  can be obtained according to the following 

dependence: 

Q

LS
св


 ..

1
 ,          (21) 

where 
..св

S  – the area of the output cross-section of the head; 

           L  – the required length of the polymer pipe. 

After defining the dependences for 4 , 1  and specifying the processing temperatures 

we got the inequality: 

      

2

3

1

2

..
124
































 x

TT

TT
LSpQ

св
 .      (22) 

F. Minimum melt viscosity constraint. 

To guarantee the stability and exclusion of the polymer stocking sagging on the output 

of the coextruder head, it is necessary to introduce the constraint on the minimum melt 

viscosity of the polymer: 

         ][  ,          (23) 

where   – the melt viscosity; 

          ][  – the permissible minimum melt viscosity. 
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Permissible minimum melt viscosity is defined according to the following formula [14]: 

 
v

L
з






23,1

,           (24) 

where   – the density of melt viscosity, 

           v – the linear speed of the preform movement. 

The value of the linear speed can be defined on the basis of the volumetric capacity: 

..св
S

Q
v  .           (25) 

Thus, the permissible minimum melt viscosity is defined according to the following 

formula: 

 
Q

SL
свз ..

23,1 



 .          (26) 

The viscosity of the polymer melt is identified by the following formula: 
 oTT

o
em




01,0 .         (27) 

Having defined the dependences for  , ][  we get the following inequality: 

 oTT

o

свз

em

SL
Q






01,0

..

23,1 
.          (28) 

The constraints (13) and (17) are nonlinear. To do the optimization task of the combined 

extrusion of the blown containers with the usage of the blown rotor by the method of 

nonlinear programming [15], all the constraints are brought to the form: 

 

       













nnn
BYCXA

BYCXA



111

.         (29) 

For this purpose we find the logarithms (10) and (12): 

 

        








QX

MX
p

lg

lg

2

1
.          (30) 

We also find the logarithm for the linearization of the objective function: 

 

       maxlg
1
 XQK

o
.         (31) 

Thus, we have elaborated the mathematical model and the system of constraints of 

coextrusion molding, in which the target function is presented as the optimality criterion of 

the technological process that allows defining the optimum process-dependent parameters 

of combined processing of the primary, secondary polymer raw material and concrete. As a 

result, the task of improving the process of coextrusion molding of the products is brought 

to linear programming.   

The usage of the coextrusion machine can by presented by two main trends:  

 the immediate optimization of process-dependent parameters: preform molding 

pressure, the auger rotation frequency and the efficiency according to the set-up 

parameters of the equipment construction and processing conditions; 

 obtaining the dependences of the influence of different design factors and process-

dependent parameters on the efficiency and quality of the manufactured products.  

Thus, due to the study of the technological process of the coextrusion molding of the 

given mathematical model we can fully optimize the whole process of manufacturing new 

products.  
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4. Discussion 

One of the important processes going on in the process of coextrusion molding is the 

preform cooling [16]. Its cooling time is one of the technological cycle components, and 

consequently it influences the maximum efficiency. We research the dynamics of the 

preform cooling process in the mould by mathematical modeling. The main arguments of 

the process are the volume of the preform, the type of raw material, and the preform 

thickness. The results of the mathematical modelling are presented by Fig. 1. 

 
Fig. 1. Dynamics of cooling process of the preform in the mould of the coexstrusion machine: 

V (dm3) – the volume of the product; t – the time of cooling of the preform in the mould, T – the 

preform temperature. 

 

 
Fig. 2. The study of the blow pressure influence on the plybond strength in the multilayer polymer 

system while manufacturing different volume products: Yp - the plybond strength; Рblow- the blow 

pressure; V – the product volume (dm3). 

T,
 0

C 

t, sec. 

Yp, N/m 

Pblow, MPa 
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Figure 2 presents the research of layers fusion forming process in the multilayer system. 

It is shown that the layers fusion forming in the given system occurs according to the 

microreaction mechanism [17]. The temperature, the blow pressure and the contact 

continuation during the structure forming influence greatly the intensity of microreaction 

processes behaviour [18-20]. The linear dependence of the joint efficiency on the blow 

pressure is exposed. That is why the relevant optimization of the process-dependent 

parameters was done to provide the necessary level of the layers joint.  

The joint efficiency is estimated by the plybond strength Yp. The level of layers 

interaction in the polymer-concrete system determines the operating characteristics of the 

multilayer material considerably. 

The recommended process-dependent parameters of layers joint for the coextrusion 

High Density Polyethylene - High Density Polyethylene - Lime are as follows: 

1. The technological process has to be carried out with the maximum possible, close to 

the critical, stress of the shift in the multilayer flow. The maximum possible total 

efficiency, when the critical value of shift deformations is achieved, is: 

 -for the gap of 1 mm with the internal channel radius of 8 mm and the temperature 

170 
0
С - 4 g/s, the maximum stress of the shift - 312 MPa, the speed of the shift 538  с

-1
; 

 for the gap of 4 mm with the internal channel radius of 8 mm and the temperature 170 
0
С - 7 g/s, the maximum stress of the shift - 364 MPa, the speed of the shift 575  с

-1
. 

2. The pressure of blow molding has to be maintained at 0,25-0,35 MPa, in this case the 

minimum initial speed of deforming will be guaranteed, and at the same time this pressure 

will be enough for pressing the polymer container to the walls of the mould, which is 

necessary for the quick cooling of the preform. 

5. Conclusions 

1. The study estimated the limits and optimization criterion for operating the coextrusion 

machine for forming polymer-concrete building constructions with the purpose of defining 

the metrics and output parameters of the mathematical model on the basis of the record of 

the auger rotation frequency, the maximum motor torque, the stress of the shift, the product 

time cooling, and the minimum melt viscosity constraint. 

2. We elaborated the algorithm and the mathematical model of coextrusion molding 

process with the usage of singled out constraints and the target function with the purpose of 

design factors and process-dependent parameters of the coextrusion machine optimization.   

3. According to the result of the deflected mode, the optimal value of the blow pressure 

of 0,5 MPa, providing the even layup, is defined. 

 
The study was carried out with the financial support of the Ministry of Education and Science of the 

Russian Federation within the framework of the scientific project 10.1622.2017/4.6. 
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