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Abstract. Formation of balance of thermal energy and the heat carrier for 

a thermal network is carried out for the purpose of increase of efficiency of 

work of the heat supplying organization. The standard approach proposes 

to write off the difference between the released and realized heat energy 

for heat losses. The article proposes a new approach to the formation of the 

balance of thermal energy and coolant. It includes statistical analysis of 

telemetry data relating to the released thermal energy. Heat consumption 

was estimated by contractual load for heating, ventilation and hot water 

supply. In the mathematical model of the thermal balance for each term 

weight coefficients were introduced. To obtain the numerical values of 

these coefficients, the method of least squares was used. The results of 

checking the adequacy of mathematical models that take into account or 

neglect thermal losses are presented. The obtained coefficients for the 

mathematical model of heat balance were used for the mathematical model 

of mass balance. The results can be used to predict the cost of production 

and transmission of heat energy and coolant, to assess the efficiency of the 

heat network and the formation of tariff applications for the future. 

1 Introduction 

The heat pipelines as others engineering systems are a part of every human settlement. If 

the city turns into a Smart city, then engineering systems must be satisfied to the status 

Smart Grid. There are no opponents of the necessity of development and introduction of 

ideas, which increase “the intellectuality” of heat pipelines. The process of engineering 

systems turning into the other intellectual level can be rather long. 

2 Literature review 

Pumping stations, subscriber inputs, heat supply sources are accepted to equip by the means 

of automatic and telementry [1]. The identification of necessary and sufficient amount of 

the intervening establishments, which are equipped by the telemetrical means, and their 

territorial disposition merit a special research. In general present publications [2-11] 

observe problems related with complete automation of data on energy consumption 
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collection and transfer. There is practically no discussion of issues related to the processing 

and analysis of the collected information, the Range of tasks that can be solved with new 

approaches to the automation of information collection from all objects of the network will 

expand. 

One of the aim is a aim of preparation of heat and material balance of the network. One of 

these tasks is the task of drawing up the thermal and material balance of the network. To 

solve this problem, it is necessary to collect synchronized information from the sources 

supplying the network and from the consumers connected to the network. The full amount 

of data will allow to estimate the heat losses and leaks that occur during the transport of the 

coolant. The time period for which the balance is drawn is determined by the frequency of 

obtaining the initial information. 

3 Methods 

The mathematical model of heat balance is based on the law of heat energy conservation: 

Q Q Q QHV HW HL   , (1) 

Where Q, Gcal/day – is the amount of thermal energy released into the network; 
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, Gcal/day, - consumed energy by all heating and ventilation systems; 

k1 - number of subscribers with heating and ventilation systems; 

2
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 , Gcal/day, - energy consumed by all hot water supply systems; 

k2 - number of subscribers with hot water supply systems; 

QHL  , Gcal/day, heat losses through thermal insulation of pipelines and equipment. 

Consider ways to obtain information about each component of the balance (1). 

The amount of energy released Q is determined by the formula using the measurement 

results: 
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Where c, Gcal/(t °С) - the heat capacity of water; 

Gsi
, t/day, - coolant flow rate in the i supply pipeline; 

tsi   
°С, - coolant temperature at the inlet of the i supply pipeline; 

Gri
, t/day, - coolant flow rate in the I-th return pipeline; 

tri   
°С, - coolant temperature at the outlet of the i return pipeline. 

The number of terms in the formula (2) is determined by the number of working pipes k. 

The energy consumed by heating, ventilation and hot water systems can be estimated from 

the data of consumer metering units. This requires not only the presence of these nodes, but 

also the synchronous transmission of information. If the subscriber uses the meter readings 

to pay for the consumed thermal energy and does so when it is convenient, even partially 

use the actual load of the systems is not possible. 

Another way to estimate the energy consumed is to recalculate the calculated loads on the 

current conditions by the formula: 
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Where 
1

1
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cQ
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, Gcal/h, - total calculated load of heating and ventilation; 

cto , °С - calculated outdoor temperature taken according to [12] equal to -39 °C; 

to , °С – current outdoor temperature; 

ti , °С – calculated internal air temperature taken as 20 °C. 

Assuming that the thermal load on the hot water systems is constant throughout the year, 

the thermal energy consumed is determined by the formula: 
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 , Gcal/day, - total calculated load for needs hot water systems. 

Heat losses through thermal insulation were recalculated to the current conditions – the 

temperature of the outside air, the temperature of the coolant in the supply and return 

pipelines according to the formulas [13]: 

- for sections of underground strip (ducted and ductless) total for supply and return 

pipelines mQu , Gkal/day, according to the formula: 
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- for sections of the above-ground (above-ground and basement) laying separately on the 

giving .
mQa s  and  .

mQa r  reverse, Gkal/day, pipeline formula: 
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Where mts  
 
и  mto

  
, °С, - the average monthly temperature of the coolant in the supply and 

return pipelines of the heating network, respectively, obtained during the survey period; 

 mt
soil

 
и mto

 
, °С, 

 
- average for the month value, respectively, of the soil on the depth of 

laying the pipes and outside air received during the survey period. For basement laying the 

temperature of internal air was taken equal to 20 °C. Ground temperature was taken 

according to the data of the reference book [12]. 

Operating hour heat loss during average conditions was determined for sections of 

underground strip total for supply and return piping 
y

Qu , kcal / h, by the formula: 
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plots for ground installation separately for .
y

Qa s
 
 and inverse .

y
Qa r

 
, kcal / h, piping 

formulas:  
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,...  LKqQ rara

y

ra       (10) 

qu  , .qa s  и .qa r  , kcal/(m h) - specific hourly heat losses, defined according to the norms 

of heat losses in accordance with the design standards of thermal insulation for piping and 

equipment for each diameter pipeline with an annual average conditions of operation of the 

heat network, for underground strip total for supply and return piping and separately for 

ground installation; 

L, m, - length of pipelines on a site of a thermal network with diameter d in two-pipe 

calculation at under-ground laying and on the giving (return) line at overground laying; 

β - coefficient of local heat losses, taking into account the thermal losses of valves, 

compensators, supports; adopted for underground channel and aboveground gaskets equal 

to 1.2 with diameters of pipelines up to 150 mm and 1.15 with diameters of 150 mm and 

more, as well as with all diameters of the channel-free gaskets. 

Analysis of the calculated load raises doubts about their absolute reliability. The calculated 

load on the DHW corresponds to the maximum load, rarely achievable in reality. Therefore, 

to use the contractual loads as calculated to estimate the actual consumption for heating, 

ventilation and hot water, the coefficients m1, m2, m3 were introduced into equation (1), 

after which the equation took the form: 

1 2 3Q m Q m Q m QHV HW HL           (11) 

To obtain the coefficients m1, m2, m3 it is necessary to use the least squares method [14]. 

The initial data are: 

- telemetry data - average monthly values of ambient air temperature and the 

coolant supply and return lines, the values of the costs in the supply and return lines; 

- contractual (settlement) load for heating and ventilation, calculated on the actual 

average conditions; 

- heat losses converted to actual average monthly conditions. 

The adequacy of the mathematical model to the real process was checked for all days 

included in the sample. The deviation of the predicted values from the actual values was 

estimated by the formula: 
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where Q , Gcal/day, -  predicted value of thermal energy consumption; 

Q, Gcal/day, - actual heat release.  

 

The mathematical model of material balance of the heat carrier is in direct dependence on 

mathematical model of balance of thermal energy, i.e. the coefficients m1, m2 received for 

model of thermal balance have to be fair at reduction of balance of the heat carrier. 

The consumption of make-up water is equal to the amount of coolant consumption for the 

needs of hot water supply of subscribers with an open circuit connection and leaks: 

G G GHW WL  .       (13) 

Since leakage is a small proportion of the consumption of hot water, it is not taken into 

account in future consideration.  

Daily consumption of coolant for needs of hot water supply is determined by the formula: 
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where  
cQ
HW , Gcal/h, - the estimated load for needs of hot water supply; 

ats , °С – actual temperature in the supply line; 
atc , °С – actual temperature of the cold water; 

HW
r

, кг/м3 – the density of the coolant at a temperature 

a
t
s . 

 

The total flow rate in the supply lines GsS  
is equal to the amount of coolant costs 

for heating and ventilation needs and hot water needs of subscribers: 

,21 HWHVS
GmGmG 


      (15) 

where G
HV

, t/day, - consumption for heating and ventilation, determined by the 

formula: 
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cQ
HW

, Gcal/h, - calculated  thermal load for heating and ventilation; 

cts , ctr , °С, – the temperature of the coolant, respectively, in the supply and return 

pipelines, determined by the temperature schedule and equal to 130 and 70 °C; 

G
HW

, t/day, - determined by the formula (14); 

m1, m2 - linear regression coefficients (11). 

The adequacy of the model to the actual data can be checked only for the heating period, 

since the coolant consumption for heating and ventilation is 0 in the summer. The criterion 

is the deviation of the amount of coolant costs for heating, ventilation and hot water from 

the amount of measured costs in the supply lines: 
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4 Research object 

The heat and mass balance were made for the real heat network. The way of regulation is 

qualitative. Wiring diagram for domestic hot water – open. 

The source has 3 mains, in the summer period only 2 of them more often work. The 

periodicity of the data collection is a day. The data of telemetry include period of 629 days. 

Information about actual consumption of thermal energy is practically absent. It did not 

make sense to judge the consumption of thermal energy by payments for it, since the 

analysis of payments showed the absence of the system both in the payment periods and in 

the methods of calculation. Only heating network was connected to 899 subscribers.  

The system of pipelines consisted of 1295 sections of different diameters, methods and 

years of laying.  
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5 Results 

When compiling the heat balance, it is important to use daily telemetry data at the source. 

The outdoor temperature was presented both actual and predicted. The samples of each of 

them did not fully cover all 629 days, while there was a time period when both 

temperatures were present. The frequency distribution shows that the difference between 

the predicted and actual temperatures is described by the normal distribution with the 

parameters m=0.0, =1.4 (Fig.1), and in the absence of the actual temperature can use the 

predicted. 

The accumulation of data makes it possible to assess climate change (Fig.2). Temperature 

fluctuations during the month make it difficult to assess the nature of the changes (Fig.2), 

averaging of daily temperatures during the month allows to compare them with reference 

data [12]. The average monthly average actual data is the same as the reference data. For 

example, cold February 2014 is compensated by warm March and April. 

Analysis of the temperature in the supply and return pipeline at the source (Fig.4) makes it 

possible to estimate deviations from the accepted temperature schedule. The temperature of 

the mains water is too high in summer (Fig.5), in the heating period at low outside 

temperatures, the coolant temperature is lower than required by the schedule 

To analyze the data, it is not enough to visualize them on the charts, the use of statistical 

methods allows to quantify the results. For example, the statistical analysis presented in the 

table. 1, showed that it is possible to accept the hypothesis of the constancy of the daily 

total flow rate in all supply lines only for heating periods 2013-2014 (sample 1) and 2014-

2015 (sample 3). 

 

 
Fig. 1 Frequency response of the difference between predicted and actual outdoor temperatures 

 

 
Fig.2 Changes in the average daily outdoor temperature 
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Fig. 3 Change in average monthly outdoor temperature 

 
Fig. 4 Change of coolant temperature in the supply and return pipeline during the heating period 

 
Fig. 5 Change of coolant temperature in the supply and return pipeline in summer 

Table 1. Testing the hypothesis of the constancy of the average daily total costs in the supply lines, 

regardless of the season 
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The results of the regression analysis are presented in the table. 2. Model 1 includes the 

3 components of the balance sheet (11); model 2 – 2 terms - heat loss of the piping to be 

equal to 0; model 3 – 3 components, the coefficient of m3 is initially equal to 1. 

 

Table 2. The results of the regression analysis 

№№ Coefficients r2 

m1 m2 m3 

1 1,268 0,319 0,021 0,996 

2 1,270 0,320 0 0,996 

3 1,170 0,260 1 0,995 

 

When removing heat losses from the components of the balance factors m1 and m2 changed 

to thousandths of a share (compare the first and second lines of the table. 2). At 100% 

taking into account heat losses (m3=1), the factors m1 and m2 changed more significantly, 

respectively, by 7% and 18%. 

In all three models, the deterministic coefficient r
2
 is close to 1, indicating no difference 

between actual and estimated values. 

The actual and predicted values of heat output to the network are shown in Fig. 6. 

Repeating the numbers of the months is the month of transition from the heating mode to 

summer and back Values calculated according to the formula (12), is the same for models 

2 and 3. The greatest error have days, which coincide with the period of transition from the 

heating period to the summer and back. During the summer period, periods of 8 days are 

allocated, which are characterized by significant deviations of the predicted values from the 

actual ones. This is due to the change in the mode of operation of the heat network 

(preventive maintenance and disconnection of consumers). Average  values are -3.8% for 

model 2 and -5.5% for model 3. 

 

 
Fig. 6. Comparison of actual and predicted values Q 

 

The ratio of the coolant flow GHW  calculated by the formula (14) to the actual makeup 

consumption G was analyzed separately for each season. Table 3 shows the average ratio, 

standard deviation, and confidence intervals. 
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Table 3. Statistical characteristics of the ratio of coolant flow to make-up flow 

№№ Sample Average 

GHW/G 

Standard deviation Confidence interval 

1 1 0,25 0,05 0,16 0,34 

2 2 0,19 0,05 0,09 0,28 

3 3 0,22 0,03 0,16 0,29 

4 4 0,18 0,04 0,09 0,26 

 

The coefficients m1 and m2 obtained for the approximating dependence (11) were used to 

predict the total flow rate in the supply lines according to the formula (15). The prediction 

s -0.7% for sample 

1 and 1.4% for sample 3. 

Table 4. Error estimation 

№№ Model Sample Average 

G 

Standard deviation Confidence interval 

1 2 1 9,0 18 25,6 43,7 

2 3 -0,7 16 -32,2 30,8 

3 2 3 11,3 6,2 -0,7 23,4 

4 3 1,4 5,5 -9,4 12,2 

5 Discussion 

Coefficients, which are included in a equation of the thermal balance, can be explained in 

the following way. The value of the coefficient m1 > 1 indicates either incomplete 

information about the load on heating and ventilation, or about the over expenditure of 

thermal energy. The value of m2 < 1 coefficient can be interpreted as the coefficient of non-

uniformity of heat energy consumption for domestic hot water needs. These values are 

valid for the network in question. When receiving new telemetry data, changing operating 

modes and connected load coefficients included in the equation must be recalculated. 

 Mathematical model (11) permits to predict amount of thermal energy, which is necessary 

for providing loads on heating, ventilation and hot water, depending on the projected 

outdoor temperature. 

6 Conclusions  

1. Turning into the level Smart Grid is not only a networks and equips fitting out 

by devices of the automation and telemechanics, but at the same time development of 

algorithms and programs for information processing. 

2. One the problem facing the heat supply company is a preparation of thermal 

balance. The standard approach assumes that all the residual balance attributed to heat 

losses. This leads to a rise in the cost of thermal energy and, as a consequence, to an 

increase in utility bills. Using the available evidence, the proposed method allows to 

estimate the share of each term in the heat balance. 

3. Analysis of telemetry data should be carried out by considering each individual 

measurement and the entire sample. The use of statistical methods is the first step in 

increasing the intellectual level in the operation of engineering systems. 
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