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Abstract. The paper deals with structural-parametric models for 

describing dynamic processes of technical systems of an intelligent 

building. The task of searching for the transfer function of the synthesized 

elements and devices of its information-measuring and control systems 

based on the Mason method is formalized. The components of the transfer 

function are presented in the form of characteristic polynomials in the 

structural scheme of the energy-information model of the circuit. The 

results of a comparative analysis of search methods for multiple real and 

complex conjugate polynomial roots are presented. To organize their 

search, an iterative method of unconditional optimization of Fletcher-

Reeves was chosen. This conjugate gradient method allows to solve the 

problem of numerical optimization in a finite number of steps and shows 

the best convergence in comparison with the methods of the fastest 

descent, with the same order of difficulty of performing the steps of the 

algorithm. 

1. Introduction 

Management of an intelligent building is based on the collection and processing of 

information coming from elements of controlled engineering systems, represented as an 

extensive network of sensors and actuators [1-9].  The incoming data characterize the 

external impact and the response of the chain of a certain physical nature. To be able to 

assess changes in its parameters in a structurally formalized language for describing 

processes in technical devices, it is necessary to build an energy-information model of the 

circuit [10, 11]. According to this model, the relationship between the quantities and 

parameters of the chains is determined by formula transformations through a system of 

energy, static and dynamic criteria. 

The criteria of the energy-information model of the circuit, provided that the parameters 

are quasi-constant, can be represented in the operator form: 
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𝑈(𝑝) ≈ 𝑅(𝑝) 𝐼(𝑝) 

𝐼(𝑝) ≈ 𝐶(𝑝) 𝑈(𝑝) 

𝑈(𝑝) ≈ 𝐿(𝑝) 𝐼(𝑝) 

𝐼(𝑝) ≈ 𝐺(𝑝) 𝑈(𝑝) 

𝑈(𝑝) ≈ 𝑊(𝑝) 𝐼(𝑝) 

𝐼(𝑝) ≈ 𝐷(𝑝) 𝑈(𝑝) 

 

(1) 

 

where  p – impulse, U – impact, I – reaction, R – resistance, G – conductivity, C – capacity, 

W – rigidity, L – inductance, D – deductive chain. 

In case parameters R, C, L, W, G, D are constant, then their images in the operator form 

take the form: 

𝐺(𝑝) = 𝐺 

𝐿(𝑝) = 𝑝𝐿 

𝑊(𝑝) = 𝑊 𝑝⁄  

𝑅(𝑝) = 𝑅 

𝐶(𝑝) = 𝑝𝐶 

𝐷(𝑝) = 𝐷 𝑝⁄  

 

(2) 

 

2. Methods 

Since the main task of the system’s core is to obtain an analytical function of a parametric 

block diagram at a given point, a method was chosen based on obtaining the Laplace map 

of the desired transfer function and its translation into the original area. 

In this case, the operation of each individual circuit circuit block can be described as a 

linear differential equation: 

    𝑎𝑛𝑌
(𝑛)(𝑡) + 𝑎𝑛−1𝑌

(𝑛−1)(𝑡)+. . . +𝑎0 = 𝑏𝑚𝑋
(𝑚)(𝑡) + 𝑏𝑚−1𝑋

(𝑚−1)(𝑡)+. . . +𝑏0          (3) 

where  Х(t)  the variation of the input signal; 

           Y(t)  the variation of the output signal; 

           𝑎𝑛, 𝑎𝑛−1, 𝑎0 , 𝑏𝑚, 𝑏𝑚−1, 𝑏0  numerical coefficients. 

 
Thus, a parametrically complex block diagram of an information-measuring and control 

system of an intelligent building is generally described by a system of equations. So, for 

example, for the scheme (Fig.): 

 

Fig.1. Example of a parametric block diagram 

the system of linear differential equations is represented as: 

{
 
 
 
 

 
 
 
 𝑎𝑛1𝑌1

(𝑛1)(𝑡) + 𝑎𝑛1−1𝑌1
(𝑛1−1)(𝑡) + ⋯+ 𝑎01 = 𝑏𝑚1𝑋1

(𝑚1)(𝑡) + 𝑏𝑚1−1𝑋1
(𝑚1−1)(𝑡) + ⋯+ 𝑏01

𝑎𝑛2𝑌2
(𝑛2)(𝑡) + 𝑎𝑛2−1𝑌2

(𝑛2−1)(𝑡) + ⋯+ 𝑎02 = 𝑏𝑚2𝑋2
(𝑚2)(𝑡) + 𝑏𝑚2−1𝑋2

(𝑚2−1)(𝑡) +⋯+ 𝑏02

𝑎𝑛3𝑌3
(𝑛3)(𝑡) + 𝑎𝑛3−1𝑌3

(𝑛3−1)(𝑡) + ⋯+ 𝑎03 = 𝑏𝑚3𝑋3
(𝑚3)(𝑡) + 𝑏𝑚3−1𝑋3

(𝑚3−1)(𝑡) +⋯+ 𝑏03

𝑎𝑛4𝑌4
(𝑛4)(𝑡) + 𝑎𝑛4−1𝑌4

(𝑛4−1)(𝑡) +⋯+ 𝑎04 = 𝑏𝑚4𝑋4
(𝑚4)(𝑡) + 𝑏𝑚4−1𝑋1

(𝑚4−1)(𝑡) +⋯+ 𝑏04
𝑋1(𝑡) + 𝑋3(𝑡) = 𝑌𝐺(𝑡) + 𝑌4(𝑡)

𝑋2(𝑡) = 𝑌1(𝑡) + 𝑌3(𝑡)

𝑋4(𝑡) = 𝑌2(𝑡)

  

(4) 

G(t) 1 2 

3 

4 

2
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The search for a solution to the resulting system of equations reduces to the definition of 

an analytic representation of functions   𝑋1(𝑡), … , 𝑋𝑛(𝑡), 𝑌1(𝑡), … , 𝑌𝑚(𝑡)   for a given 𝑌𝐺(𝑡), 
produced by the generator G(t). 

To determine the dynamic characteristics of systems built according to similar rules, we 

use the Mason automated calculation method. [12, 13]. The main idea of this method is that 

the system is represented as a directed graph, in which arcs are equivalent to elementary 

links (blocks), and vertices - to signal transmission lines. The direction of the arc 

corresponds to the direction of movement of the signal. The control point at which the 

desired function will be calculated can only be a vertex. Since each vertex may be incident, 

both along the incoming and outgoing arcs, the signal at the vertex is a superposition of the 

output signals of the blocks corresponding to the arcs entering the vertex. The generator is 

represented by an arc, the initial vertex of which can only be outgoing. 

The Laplace transfer function in a fixed r-vertex of a directed graph is calculated by the 

formula: 

𝐿(𝑓𝑟(𝑡)) = ∑ 𝐿(𝑔𝑖(𝑡))
𝑞
𝑖=1 𝑊𝑥𝑖,𝑟                                          (5) 

where 𝐿(𝑓𝑟(𝑡))  is the mapping of the desired process; 

           𝑞  number of generators; 

           𝐿(𝑔𝑖(𝑡))  display of the function generated by the i-th generator; 

           𝑥𝑖  the final vertex of the arc corresponding to the i-th generator; 

          𝑊𝑥𝑖,𝑟  is the transfer function of the circuit that converts the signal coming from the 

vertex 𝑥𝑖 into the signal arriving at the vertex r. 

As a result of the implementation of the Mason algorithm, we obtain the transfer 

function of the entire system: 

𝑊𝑥𝑦(𝑡) =
∑ [𝑊𝑥𝑦

𝑖 (𝑡) ∆𝑖]
𝑚
𝑖=1

∆
                                                 (6) 

where 𝑊𝑥𝑦
𝑖 (𝑡)  the transfer function i of a simple path from the vertex y to the vertex 

x, equal to the product of the transfer functions of the arcs included in this path; 

           m  total number of such paths; 

            ∆  the determinant of the graph, calculated by the formula 

∆= 1 − ∑ 𝑊0𝑗 + ∑ 𝑊0𝑗𝑊0𝑘 − ∑ 𝑊0𝑗𝑊0𝑘𝑊01+ . . .𝑗,𝑘,1𝑗,𝑘𝑗                       (7) 

The inverse Laplace transform allows you to get the original function f (t) in its image 

F(p): 

𝑓(𝑡) = ℒ−1{𝐹(𝑝)} =
1

2𝜋𝑖 ∫ 𝐹(𝑝)𝑒𝑝𝑡𝑑𝑝
𝑐+𝑗∞
𝑐−𝑗∞

    (8) 

3. Results and Discussion 

The use of this expression is very difficult, especially for complex expressions F (p). 

Therefore, more acceptable methods of determining the original f (t) were developed. To 

move from the image of L {F (p)} to the original, you need to convert it to a rational 

fraction, decompose it into simple fractions and, using table transformations, present the 

sum of the simplest fractions as the sum of their corresponding originals. 

As a result of the implementation of the developed algorithms for working with an 

oriented graph, the transfer function of the structural scheme, defined by the Mason 

formula, can be expressed in terms of the transfer functions of the elementary links. 

Consider the transformation of the transfer function of the structural scheme from the 

display to the original, i.e. to real dynamic response: 

3
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𝑊(𝑝) =
𝑌(𝑝)

𝑋(𝑝)
=

𝑏𝑚𝑝
𝑚+𝑏𝑚−1𝑝

𝑚−1+⋯+𝑏0

𝑎𝑛𝑝
𝑛+𝑎𝑛−1𝑝

𝑛−1+⋯+𝑎0
                     (9) 

Each rational function of p appearing in the denominator of the transfer function of the 

structural scheme is represented as a polynomial and is a characteristic polynomial of this 

structural scheme, and an equation of the form: 

𝑃𝑛(𝑝) = 𝑎0 + 𝑎1𝑝 + 𝑎2𝑝
2 + 𝑎3𝑝

3 +⋯+ 𝑎𝑛𝑝
𝑛 = 0       (𝑎𝑛 ≠ 0)                (10) 

is a characteristic equation of the structural scheme, which has n roots, among which can be 

both real multiples and complex conjugates. 

It is known that any regular rational fraction 
𝑌(𝑝)

𝑋(𝑝)
, whose denominator is factorialized:   

𝑋(𝑝) = (𝑝 − 𝑝1)
𝑛1((𝑝 − 𝑝2))

𝑛2
(𝑝2 + 𝑟1𝑝 + 𝑞1)

𝑠1… (𝑝2 + 𝑟𝑚𝑝 + 𝑞𝑚)
𝑠𝑚,      (11) 

can be represented (and in this unique way) in the form of the following sum of simple 

fractions: 
𝑌(𝑝)

𝑋(𝑝)
=

𝑏1

𝑝−𝑝1
+

𝑏2

(𝑝−𝑝1)
2 +⋯+

𝑏𝑘1

(𝑝−𝑝1)
𝑘1 +⋯+

𝑏𝑘𝑚𝑘
(𝑝−𝑝1)

𝑚𝑘
+⋯+  

+
𝑐1𝑝+𝑑1

𝑝2+𝑟1𝑝+𝑞1
+

𝑐2𝑝+𝑑2

(𝑝2+𝑟1𝑝+𝑞1)
2 +⋯+

𝑐𝑠1𝑝+𝑑𝑠1

(𝑝2+𝑟1𝑝+𝑞1)
𝑠1 +⋯+

𝑐𝑠𝑚𝑠𝑝+𝑑𝑠𝑚𝑠
(𝑝2+𝑟𝑠𝑝+𝑞𝑠)

𝑚𝑠
 ,                   (12) 

each of which is a transfer function of the link of the structural diagram. 

For such a representation  
𝑌(𝑝)

𝑋(𝑝)
 you need to find the roots of the polynomial X (p) and 

determine the coefficients. 

Case 1. The polynomial X (p) of the denominator has real roots 𝑝𝑘of multiplicity 𝑚𝑘. 

1) the degree of the numerator m of the polynomial Y (p) is greater than the 

degree of the denominator n of the polynomial X (p): 

when n≤m, the numerator is divided by the denominator according to Gorner’s 

scheme, then step 2), 

2) the degree of the numerator m of the polynomial Y (p) is less than the 

denominator n of the polynomial X (p): 

for n≥m, the transfer functions of the structural scheme are represented as the sum 

of the elementary fractions corresponding to the roots 𝑝𝑘 (of multiplicity 𝑚𝑘) of 

the polynomial X (p): 

𝑌(𝑝)

𝑋(𝑝)
= ∑ ∑

𝑏𝑘𝑗

(𝑝−𝑝𝑘)
𝑗 = ∑ [

𝑏𝑘1

(𝑝−𝑝𝑘)
+

𝑏𝑘2

(𝑝−𝑝𝑘)
2 +⋯+

𝑏𝑘𝑚𝑘

(𝑝−𝑝𝑘)
𝑚𝑘
]𝑘

𝑚𝑘
𝑗=1𝑘               (13) 

To find the roots of the characteristic equation of the structural scheme, classical 

methods are used. [14, 15]. 

Comparative results of methods for finding real multiple roots of a polynomial are 

presented in table 1. 
Table 1. Comparative results of polynomial root finding methods 

№ 
Method Name 

characteristics 

linear interpolation 

method  

(chord method) 

Newton's method 

(the method of 

tangents) 

Stephenson's 

method 

1 reliability high high high 

2 rate of convergence slow high high 

3 application at multiple roots - + + 

4 the need to calculate 

derivatives at each step 
- + - 

5 number of iterations large small large 

6 implementation difficulty at 

program level 
- + - 
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To organize the search for real roots 𝑝𝑘 of the multiplicity 𝑚𝑘 of the characteristic 

equation of the structural scheme, the Stephenson method was chosen, despite the fact that 

an increased number of iterations due to the replacement of approximation by a derivative 

with a computational expression leads to a new iterative algorithm. However, due to this, 

there is no need to calculate the derivatives at each step, and the difficulty of 

implementation at the program level is sharply reduced. 

The main iterative steps of the Stephenson method [16, 17] can be represented as 

follows. 

1. Let be 𝑥𝑛 – the current approach to the root 𝑥𝑛 and  ∆𝑥 = 𝑥𝑟 − 𝑥𝑛. 

2. Find the point 𝑥𝑟
𝑙 = 𝑥𝑛+1  as the following 𝑥𝑛 root refinement. 

3. Then we come to the iterative algorithm: 

𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓(𝑥𝑛+𝑓(𝑥𝑛))−𝑓(𝑥𝑛)
∙ 𝑓(𝑥𝑛),                                      (14) 

which underlies the Stephenson method. 

For the decomposition of a rational fraction  
𝑌(𝑝)

𝑋(𝑝)
  with the denominator represented as 

factors, according to the found roots of the polynomial X (p), into simple fractions, it is 

necessary to calculate the coefficients 𝑏𝑘𝑗. It is proposed to use one of the following 

methods to calculate the 𝑏𝑘𝑗 coefficients or a combination of these methods [18]: 

1. If  𝑚𝑘 = 1 (𝑝𝑘  – simple root), that 𝑏𝑘𝑗 = 𝑔(𝑝𝑘)/𝑓′(𝑝𝑘). 

2. Multiply both sides of equality (13) by f (p) and equate the coefficients with 

equal powers of p in both sides of the obtained equality. 

3. Multiply both sides of the equality (13) on 𝑓(𝑝) and successively 

differentiate the resulting equality. Let be 𝜑𝑘(𝑝) = 𝑓(𝑝)/(𝑝 − 𝑝𝑘)
𝑚𝑘 . Then 

𝑏𝑘𝑚𝑘
, 𝑏𝑘𝑚𝑘−1

, …  sequentially found from the following relationships: 

𝑔(𝑝𝑘) = 𝑏𝑘𝑚𝑘
𝜑𝑘(𝑝𝑘)                                                                                    (15) 

𝑔′(𝑝𝑘) = 𝑏𝑘𝑚𝑘
𝜑𝑘
′ (𝑝𝑘) + 𝑏𝑘𝑚𝑘−1

𝜑𝑘(𝑝𝑘) 

𝑔′′(𝑝𝑘) = 𝑏𝑘𝑚𝑘
𝜑𝑘
′′(𝑝𝑘) + 2𝑏𝑘𝑚𝑘−1

𝜑𝑘
′ (𝑝𝑘) + 2𝑏𝑘𝑚𝑘−2

𝜑𝑘(𝑝𝑘)                                                                       

𝑔(𝑚𝑘−1)(𝑝𝑘)

= 𝑏𝑘𝑚𝑘
𝜑𝑘
(𝑚𝑘−1)(𝑝𝑘) + 𝑚𝑘𝑏𝑘𝑚𝑘−1

𝜑𝑘
(𝑚𝑘−2)(𝑝𝑘)

+ 𝑚𝑘𝑚𝑘−1𝑏𝑘𝑚𝑘−2
𝜑𝑘
(𝑚𝑘−3)(𝑝𝑘) + ⋯+𝑚𝑘! 𝑏𝑘1𝜑𝑘(𝑝𝑘) 

Case 2. The polynomial 𝑋(𝑝)of the denominator has complex conjugate roots 𝑝𝑘of 

multiplicity 𝑚𝑘: 

1) the degree of the numerator m of the polynomial Y (p) is greater than the 

degree of the denominator n of the polynomial X (p): 

when n≤m, the numerator is divided by the denominator according to Gorner’s 

scheme, then the item is executed 2), 

2) the degree of the numerator m of the polynomial Y (p) is less than the 

denominator n of the polynomial X (p): 

for n ≥ m, the transfer functions of the structural scheme are represented as a sum 

of unit fractions corresponding to the roots 𝑝𝑠  (of multiplicity 𝑚𝑠) of the 

polynomial X (p): 

𝑊(𝑝) = 𝑐𝑠1
𝑝+𝑑𝑠1

[(𝑝−𝑎𝑠)
2+𝜔𝑠

2]
+ 𝑐𝑠2

𝑝+𝑑𝑠2

[(𝑝−𝑎𝑠)
2+𝜔𝑠

2]
2 +⋯+ 𝑐𝑠𝑚𝑠

𝑝+𝑑𝑠𝑚𝑠

[(𝑝−𝑎𝑠)
2+𝜔𝑠

2]
𝑚𝑠            (16) 

In this case, the elementary fractions correspond to an arbitrary pair of complex 

conjugate roots : 𝑎𝑠 + 𝑗𝜔𝑠; 𝑎𝑘 − 𝑗𝜔𝑘 multiplicities 𝑚𝑠. 
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With all the variety and variability of the numerical implementation of algorithms for 

the organization of their search, one of the methods of conjugate gradients was chosen, 

namely the iterative method of unconditional Fletcher-Reeves optimization [19]. 

The methods of conjugate gradients are based on the calculation of the values of only 

the first derivatives and have positive properties in comparison with the Newtonian 

methods (Cauchy, Newton and others), which are referred to the methods using second 

order derivatives. Newton's methods guarantee obtaining a minimum of nonlinear functions 

of the goal, but it is impossible to judge in advance the number of necessary iterations even 

for the case of quadratic functions of the goal. The methods of conjugate gradients 

guarantee the achievement of a minimum of a quadratic goal function in a finite number of 

steps, not exceeding the value of n, the dimension of the space 𝑅𝑛 [20]. Such methods are 

called quadratically convergent, since the rate of convergence is quadratic. This is a 

significant advantage when compared with conventional gradient methods (the steepest 

descent method or the coordinate descent method). Conjugate gradient methods converge 

4-5 times faster than the fastest descent method. These methods are highly reliable and 

quickly converge in the vicinity of the minimum point. They allow you to guarantee 

convergence in a finite number of steps, and the required accuracy can be achieved much 

earlier. 

Comparative results of methods for finding complex conjugate roots of a polynomial 

are presented in Table 2. 

Table 2. Comparative results of methods for finding the roots of a polynomial 

№ Method Title 

characteristics 
gradient method Newton method 

Fletcher-Reeves 

method 

1 reliability high high high 

2 rate of convergence slow high high 

3 
the need to calculate the values 

of the first derivatives 
+ + + 

4 
the necessity of calculating the 

values of the second derivatives 
- + - 

5 
implementation difficulty at 

program level 
- + - 

6 computer memory efficiency + - + 

The advantage of the Fletcher-Reeves algorithm is that it does not require time-

consuming computations of second partial derivatives like Newton's methods and saves 

computer memory, since it does not need Hessian matrices used in Newton's method and 

other second-order methods. At the same time, this method is almost as effective as quasi-

Newton algorithms [15]. 

The Fletcher-Reeves method allows us to find the minimum of a nonlinear objective 

function of several variables [17]. For this, the complex conjugate roots are represented as a 

function of two variables: 

   𝑓(𝑥) = 𝑓1(𝑥1, 𝑥2) + 𝑖𝑓2(𝑥1, 𝑥2),                                           (17) 

where  𝑥1 = 𝑅𝑒 𝑥, 𝑥2 = Im 𝑥, 𝑓1 = 𝑅𝑒 𝑓, 𝑓2 = Im 𝑓. 

Then the problem of finding the roots of a polynomial is equivalent to the problem: 

𝐹(𝑥) = 𝑓1
2(𝑥1, 𝑥2) + 𝑓2

2(𝑥1, 𝑥2) → 𝑚𝑖𝑛                                     (18) 

Such a formulation of the problem extends to the search for all roots of a polynomial, 

both real multiple and complex conjugate. 

6

E3S Web of Conferences 97, 01015 (2019) https://doi.org/10.1051/e3sconf/20199701015
FORM-2019



Consider the Fletcher-Reeves algorithm in more detail. In this method, the direction of 

steepest descent is rejected by adding to it the direction used in the previous step. As a 

result, a sequence of search directions is built. 𝑆(𝑘), which are linear combinations of the 

gradient of the current direction of the fastest descent [−∇𝑓(𝑝(𝑘))], and previous research 

directions - 𝑆(𝑖), i. е. 

𝑆(𝑘+1) = −∇𝑓(𝑝(𝑘)) + ∑ 𝛼𝑖𝑆
(𝑖)𝑘

𝑖=1 .                                        (19) 

The values of weighting coefficients  𝛼𝑖 are chosen so that the new direction 𝑆(𝑘) it was 

associated with all previous directions. With this criterion for the end of the search is the 

condition: 

(∇2𝑓(𝑝(𝑘)), 𝑆(𝑘)) = 0                                                     (20) 

It is proved that:   𝛼1 = 𝛼2 = ⋯ = 𝛼𝑘−1 = 0,    𝛼𝑘 =
‖∇𝑓(𝑝(𝑘))‖

2

‖∇𝑓(𝑝(𝑘−1))‖
2  , 

where ‖∇𝑓(𝑝(𝑘))‖
2
 - the gradient modulus determines the rate of increase or decrease of 

the function in the direction of the gradient or anti-gradient, respectively. This condition 

allows us to build a fast and efficient algorithm for searching for extrema. 

As a result, the Fletcher-Reeves algorithm can be written as follows: 

1) Set  𝜀 > 0,  𝑝1 to the starting point,  𝑆(1) = −∇𝑓(𝑝1)  

and set 𝑦(1) = 𝑝(1), 𝑘 = 𝑗 = 1. 

2) If  ‖∇𝑓(𝑝(𝑘))‖ < 𝜀, then the end and the optimum will be: 𝑝∗ = 𝑦
(𝑗),                                      

otherwise the one-dimensional optimization  min𝜆 𝑓(𝑦
𝑗 + 𝜆𝑆𝑗) → 𝜆𝑗,  

put 𝑦(𝑗+1) = 𝑦(𝑗) + 𝜆𝑗𝑆
(𝑗) 

3) If 𝑗 < 𝑛, go to step 4, otherwise to step 5. 

4) Put  𝑆(𝑗+1) = −∇𝑓(𝑦(𝑗+1)) +
‖∇𝑓(𝑦(𝐽+1))‖

2

‖∇𝑓(𝑦(𝑗))‖
2 𝑆(𝑗), 𝑗 = 𝑗 + 1, go to step 2. 

5) Put  𝑝(𝑘+1) = 𝑦(𝑛+1),   𝑦(1) = 𝑦(𝑛+1), 𝑆(1) = −∇𝑓(𝑦(1)),   𝑘 = 𝑘 + 1, 𝑗 = 1,  go 

to step 2. 

4. Conclusion  

The Fletcher-Reeves algorithm is sensitive to the accuracy of a one-dimensional search, so 

when using it, you need to eliminate any rounding errors that may occur. There is no 

guarantee of convergence always and everywhere in the algorithm, but as shown by 

practical calculations, the algorithm almost always leads to an approximate optimum. The 

main advantage of the conjugate gradient method is that it allows to solve the optimization 

problem in a finite number of steps and shows better convergence in comparison with the 

methods of the fastest descent, with the same order of complexity of the steps of the 

algorithm.  

Thus, to go from the image to the original of the transfer function of the parametric 

structural scheme, you must perform the following steps: 

1. Find the roots of the denominator of the output transfer function using the Fletcher-

Reeves algorithm. 

2. Decompose the output transfer function into elementary terms. 

3. Translate elementary terms into the original area and present the original output 

transfer function as a whole. 
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