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Abstract. Plates, panels and shells made of composite material with fixed 

objects in the form of an additional mass have found a wide use due to 

their viscoelastic and strength properties. An analysis of their dynamic 

behavior indicates a significant effect of inhomogeneity of an associated 

mass type on their strength. The problem of oscillations of a viscoelastic 

orthotropic rectangular plate with an associated mass is considered 

according to the Kirchhoff-Love hypothesis in a geometrically nonlinear 

statement. This problem is reduced to solving the systems of nonlinear 

integro-differential equations with singular relaxation kernels, solved by 

the Bubnov-Galerkin method in combination with a numerical method 

based on the use of quadrature formulas. The numerical values of the 

approximate solution have been calculated in the Delphi programming 

environment. At wide range of changes in physicomechanical and 

geometrical parameters, the behavior of the plate has been studied. The 

effect of viscoelastic and inhomogeneous material properties, concentrated 

mass and their location on the oscillatory process of a rectangular plate is 

shown.  

1 Introduction  

Intensive development of modern industry has led to a decrease in the consumption of 

material for structures and machines. In manufacturing the structures with such properties as 

the lightness, durability and reliability, the most acceptable is the use of composite 

materials, which allow not only significantly improve the performance characteristics, but in 

some cases to create the structures that could not be implemented with the use of traditional 

materials. At the same time, the procedure for calculating and designing structures made of 

composite materials is rather complicated; it requires the consideration of their real 

properties. Therefore, the problems of strain, dynamic stability and oscillations of thin-

walled structures made of composite materials are of great interest. 

Thin-walled structures such as plates, panels and shells often play the role of a bearing 

surface, to which certain elements of the structure are fixed. Such elements are pads, 
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fasteners and instrument units; in theoretical consideration of the problems, they are 

interpreted as an additional mass rigidly fixed to the systems and concentrated in the points. 

The problems of oscillations and dynamic stability of elastic plates and cylindrical 

panels with a concentrated mass in various statements have been considered in [1-5]. There 

the problems have been solved either in a linear statement or only individual properties of 

structure material have been taken into account. 

The study of nonlinear oscillations and dynamic stability of orthotropic plates and 

cylindrical panels with no account of a concentrated mass in various statements is given in 

[6-11]. 

In [12] the natural oscillations of a rectangular plate, two adjacent edges of which are 

clamped, and the other two are free (CCFF-plate) are studied. The deflection function is 

chosen as a sum of two hyperbolic trigonometric series. The first eight natural frequencies 

are founded. The paper provides accuracy analysis and its comparison with other familiar 

results. 

Nonlinear oscillations of a viscoelastic cylindrical panel with a concentrated mass are 

considered in [13]. 

The aim of this work is to study the nonlinear oscillations of viscoelastic orthotropic 

rectangular plates with a concentrated mass. 

2 Statement of the problem 

Consider a viscoelastic orthotropic shell of a thickness h carrying a concentrated mass Mi at 

points with coordinates (xi, yi), i=1,2,…,I. 

Let us construct a mathematical model of the problem of nonlinear oscillations of a 

viscoelastic orthotropic shell with a concentrated mass in a geometrically nonlinear 

statement. 

Physical dependence between stresses xyух  ,,  and strains xyух  ,,  is taken in 

the following form [14, 15]: 
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where **, ijRR are the integral operators with relaxation kernels R(t) and Rij(t), 

respectively: 
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Here 21, EE  are the elasticity modulus in x- and y-axes directions; G is the shear 

modulus;  21,  are the Poisson's ratios; here and hereinafter, the symbols  yx  , 

 21 indicate that the remaining relations are obtained by circular substitution of 

indices. 

The relationship between the strains in the middle surface 
xyух

,,  and 

displacements w,v,u  in z,y,x directions, with account of initial imperfections, is taken 

in the form [15]: 
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where  yxww ,00   is the initial deflection of the shell, constkk yx , is the curvature 

of the middle surface of the shell. 

The bending yx MM , and torsion H  moments of the shell per unit length of the 

element edges, with account of (1), have the form [15]: 
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When deriving the equation of motion of an element of a viscoelastic orthotropic shell 

with a concentrated mass, we will proceed from equation [15]: 

,0,0
2

2

2

2































t

v

h

m

yxt

u

h

m

yx

yxyxyx  






















































y

w

x

w

x
kk

y

M

yx

H

x

M

hh

q
xyxyyxx

yx

2

22

2

2

2
1

 

.0
2

2






























t

w

h

m

x

w

y

w

y
xyy

                                    (4) 

The effect of the concentrated mass on the viscoelastic shell is inertial in nature and is 

taken into account in the equation of motion (4) with the Dirac -function [1]: 

      
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i
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, ,                                 (5) 

where   is the density of the shell material. 

Taking into account (5), substituting (1) and (3) into (4), the following system of 

integro-differential equations in partial derivatives is obtained: 
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where yx  ,   and xy  are determined from relationship (2).  

Mathematical models obtained using the system (6) with the corresponding boundary 

and initial conditions take into account the viscoelastic properties and the inhomogeneity of 

the shell material. This system of integro-differential equations in partial derivatives with 

five different relaxation kernels is quite general. In a particular case, it is possible to obtain 

from this system various equations by various theories. 

At Rkk yx 1 , the equations for the viscoelastic orthotropic spherical shell are 

obtained; at Rkk yx 1,0   for the viscoelastic orthotropic circular cylindrical shell and 

at 0 yx kk  for the viscoelastic orthotropic plate. 

3 The method of solution 

Consider the case of nonlinear oscillations of a viscoelastic orthotropic rectangular plate 

with a concentrated mass hingedly supported at the edges. In this case, mathematical model 

of the problem is described by the system of equations (6) at 0 yx kk , the solution of 

which satisfying the boundary conditions of the problem by the Bubnov-Galerkin method, is 

sought in the form [16-20]: 
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where wnm=wnm(t), unm=unm(t)  and  vnm=vnm(t) are the unknown functions of time. 
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Substituting (7) into the system of equations (6) and performing the Bubnov-Galerkin 

procedure relative to the unknowns wnm, unm  and vnm,, a system of nonlinear integro-

differential equations is obtained. 

Introducing the following dimensionless value into the resulting system we get 
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and keeping the same notations, a system of nonlinear integro-differential equations is 

obtained relative to dimensionless values klkl vu ,  and klw : 
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The resulting system of integro-differential equations is solved by a numerical method 

proposed in [8] and based on the use of quadrature formulas. The Koltunov-Rzhanitsyn 

singular kernels with three rheological parameters   and,A  [14] are used as the 

relaxation kernels:  

1)(0,)( 1    tAetГ t
 

4 Results and analysis 

The convergence of the Bubnov-Galerkin method is investigated in the paper. In calculating 

the deflection values, the 5 first harmonics are held (N=5, M=1). Calculations have shown 

that further increase in the number of terms does not have a significant effect on the 

oscillations amplitude of a viscoelastic orthotropic rectangular plate. 

Figure 1 shows the dependence of the deflection in the center of elastic (curve 1) and 

viscoelastic plates (curves 2, 3) on time.  

 

Fig. 1. The dependence of the deflection on time,  A=0 (1); 0.05 (2); 0.1 (3). 
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It is seen that an account of viscoelastic properties of the plate material leads to the 

attenuation of the oscillatory process. In the initial period, the solutions of elastic and 

viscoelastic problems differ little, but over time, the viscoelastic properties begin to have a 

significant effect. 

The influence of a concentrated mass in the center of the plate on the oscillatory process 

is shown in Figure 2. It is seen that an increase in a concentrated mass leads to a decrease in 

the amplitude of oscillations. It should be noted that in the particular case, when there is no 

concentrated mass in the center of the plate (M1=0), the results obtained coincide with the 

ones given in [11]. 

 

Fig. 2. The dependence of the deflection on time, M1=0 (1); 0.1 (2); 0.2 (3). 

The influence of geometric nonlinearity on the frequency and amplitude of oscillations 

of a viscoelastic plate has also been studied. Figure 3 shows the graph of function w for 

nonlinear (curves 1 - =1; q=1; w0=10-1; 2 - =1; q=3; w0=10-4 and 3 - =3; q=1; w0=10-

4) and linear cases (curves 4 - =1; q=1; w0=10-1; 5 - =1; q=3; w0=10-4 and 6 - =3; 

q=1; w0=10-4).  

 

Fig. 3. The dependence of the deflection on time. 

  , 0 2019)E3S Web of Conferences https://doi.org/10.1051/e3sconf /201991091
TPACEE-2018

20 204 45 ( 5

7



Studies have shown that in the absence of initial imperfections and external loads, the 

results of calculations obtained in cases of linear and nonlinear problems coincide. In this 

case, the problems can be solved in a linear statement. However, with an increase in the 

ratio between geometrical parameters of the plate  with external loads q and initial 

imperfections w0, the differences in the obtained results are observed. In this case, the 

problem must be solved in a nonlinear statement. 

5 Conclusions 

Nonlinear oscillations of viscoelastic orthotropic rectangular plates with a concentrated 

mass have been studied in the paper. 

The calculations have shown that: 

- in cases of viscoelastic plates, an increase in a concentrated mass leads to a more 

intensive decrease in the amplitude of oscillations as compared to elastic case; 

- in both elastic and viscoelastic cases, as a concentrated mass moves away from the 

center of the plate, the oscillation frequency increases; 

- depending on the values of geometrical and physical parameters of the plates, it is 

necessary in calculations to choose the appropriate theory (linear or nonlinear one). 
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