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Abstract. We built a numerical tool allowing the evaluation of self-inductance
of arbitrarily shaped coils with few windings. This tool named Inductan aims
to be relevant, reliable and reasonably fast in order to be integrated in a more
complex model. It is based on a formulation involving the vector potential and
the Biot & Savart equation. The general equation giving the self-inductance
coefficient is simplified according to the hypothesis of the envisaged geometry
allowing to transform a 3d integral in a curvilinear integral operating on just one
dimension of space. The numerical implementation is presented as exhaustively
as possible, with its particular issues linked to the discrete representation of the
coil. The tool is validated first on canonical geometry for which it exists an ana-
lytical formulation and second with direct experimental measurements obtained
on laboratory coils with controlled and known, but not canonical, shapes.

1 Introduction

At the Low Noise Underground Laboratory in Rustrel [1], Luberon, France (LSBB), a con-
ductive coil, named Vestale, lies on the top of the so-called “Grande Montagne” mountain,
more than 500 metres above the tunnels of the Laboratory. It contains 12 wires with a diame-
ter of 1.5 millimetres, forming a “screw” of few centimetre thick. Its shape is oblong, mainly
determined by the topography of the site, and inscribed in a circle of a hundred metres of di-
ameter. Vestale is currently used as an active magnetic antenna, or a source of magnetic field.
It allows imaging the karstic subsoil between the top of the mountain and a superconducting
magnetometer located in the underground laboratory. We project to modify Vestale to use
it also as an environmental sensor based on the monitoring of its electrical characterization,
possibly changing with the environment, particularly the moisture of the soil. To reach this
goal, we need a numerical model for the coil self-inductance in low frequencies regime, that
is to say without propagative phenomenum. It must be enough efficient to be integrated in a
computation code modelling the coupling between Vestale and its environment. The evalua-
tion of mutual or self inductance coefficients is an old and classical issue in electrodynamics
[2]. The general methodology adapted to industrially produced regular shaped coils, with
high density of wires, is based on the GMD [3] evaluation, and provides developped relevant
analytical formulations [4] classically used, even in classroom [5]. Developments based on
this methodology are still proposed [6], but at our knowledge, always for canonical shapes
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(the bibliography of the latest citation tends to prove that). On the other hand, heavy numeri-
cal models based on 3D finite elements method provide very reliable and relevant results for
complex geometries as found in electrical engines, for instance see [7], but not relevant for
our aim. Indeed, because of their complexity in term of numerical convergence and numer-
ical cost, it is hard to integrate them in another computation code. In the more general case
of antennas set near the ground interface, many theoretical and numerical developments have
been done since half century, dealing with the phenomena of propagation, for instance see
[8–12]. In that case, it is difficult to simply transform the model for low frequency regime
without propagative terms. Our fast and cost-effective numerical tool, named Inductan, is
based on a semi-analytical approach allowing to extract the mathematical singularities ap-
pearing in the classical Biot & Savart formulation. It can quickly evaluate the self-inductance
of an arbitrarily shaped coil, composed of thin electrical wires, with few windings, by means
of a standard desktop computer. We propose an exhaustive presentation of Inductan and
its validation with measurements on hand-made metric scaled coils. Then we conclude by
outlining some perspectives to make Inductan efficient for Vestale applications.

2 Configuration of study

Figure 1 shows three views of the typical coil under study. The electric device is a few
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Figure 1. Top-left: top view with z axis reader oriented, bottom left: side view with y axis reader ori-
ented, right: zoom in perspective representation of the wire. For clarity of the drawing representation,
the coil is represented as an helical screw. The point M is on the γ curve, P in the volume of the wire.

widings coil, obtained with a single conducting cylindrical wire, curved in space, as a cooked
spaghetto. The wire is wound on itself so that the turns formed are non - contiguous. The
radius of the wire is denoted a supposed to be small in front of the typical size of the coil
(a < ΩP), the height of the coil is denoted by h. The 3D curve γ is the central axis of
the wire. Each point P in the volume, Γ, of the conducting wire, is spotted by cartesian
coordinates (xP, yP, zP). At each point M on the γ curve, the unitary tangential vector to the
curve γ is defined and denoted by

−→tu(M). In the volume of the conductor, all the points being
in the same transverse section belong the same tangential vector

−→tu (i.e the cross section is
undeformable). The corresponding differential element of length at each point M in γ is

denoted d`(M) =

√
dxM

2 + dyM
2 + dz2

M . It is associated to the elementary displacement
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vector along γ,
−→
d`(M), colinear to

−→tu(M). So, it comes:

−→
d`(M) = d`(M)

−→tu(M) (1)

It is assumed that the coil is a perfect self inductor. Denoting by I(t) the electric current
flowing threw the conductor,

.
I(t) its temporal derivative and ei(t) the inductive bias appearing

at the terminals of the coil, the self-inductance coefficient L is defined as (in electro-kinetic
receiver convention)

ei(t) = L
.
I(t) (2)

3 Self-inductance formulation

3.1 General formulation

We suppose the quasi-static temporal regime: the propagative terms in Maxwell’s equations
[13] are neglected. Moreover, taking into account the very small radius of the wire and the
considered operating frequencies (< 10 kHz), it is relevant to neglect the skin effect and
consider that the current is uniform in the conductor. The vector potential ,

−→
A(M, t) at each

point M in space and at every time t is given by the classical relation, known as ’Biot et
Savart’ volumic relation [13]. Noting S the cross section of the wire, (here S = πa2) we
have:

−→
A(M, t) = I(t)

µ0

4πS

∫∫∫
Γ(P)

1
PM
−→tu(P)dτ(P) (3)

where µ0 = 4π.10−7 H. m−1 is the vacuum magnetic permeability
The electromotive field,

−→
Em, is classicaly defined as the opposite of the temporal derivative

of
−→
A [5]. The circulation of

−→
Em, all along γ gives the inductive bias, ei(t), to which the coil is

subjected.

ei(t) = −

∫
γ(M)

−→
Em(M, t) ·

−→
d`(M) =

∫
γ(M)

∂
−→
A
∂t

(M, t) ·
−→
d`(M) (4)

Introducing then relations (2) and (3), and taking off the notations of the points of integration
volume and path, we obtain the geometrical formulation for L.

L =
µ0

4πS

∫
γ

∫∫∫
Γ

1
PM
−→tu(P)dτ(P) ·

−→
d`(M) (5)

3.2 1D integral formulation for L

The simplification of the 3D vectorial integration over the Γ volume into a 1D integration over
γ is the theoretical core of our model. It is the key point of the numerical implementation
because it contains a mathematical (and so a numerical) singularity when the points P and M
are too close or identical. With the help of the Chasles’s formula, the integration (5) can be
done considering two different domains. The first one, denoted by Γ\M, is constitued by the
volume of the conductor from which a mesoscopic volume around the point M, denoted by
δΓM , is excluded. The second one is δΓM . Let us denote:

−→
Kn(M) =

∫∫∫
Γ\M

1
PM
−→tu(P)dτ(P) and

−→
Ks(M) =

∫∫∫
δΓM

1
PM
−→tu(P)dτ(P) (6)
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In the
−→
Kn(M) integration, the distance PM is a "great distance" (typically PM > a). It is

supposed that, from M, the volume dτ(P) is seen as a point, without variation of the transverse
distance. So, in Γ\M, dτ(P) is the volume of a cylinder of cross - section S and length d`:
dτ(P) = S d`(P). According to relation (1), it leads to:

−→
Kn(M) = S

∫
γ\M

1
PM
−→
d`(P). (7)

Concerning
−→
Ks(M), we consider that δΓM is a cylinder of length 2λ, small comparing to the

total length of the wire. It is represented on figure 2. Its central axis is supported by
−→tu(M).

M is located at the center of the cylinder, attached at an orthonormal local coordinates system

M w

Htu 

e1

e2
sH=sP

ρ P
dρ

a

2λ dsP

(M)

Figure 2. Scheme of the cylinder δΓM . M is the center of the local system of coordinates, sM = 0.
H is the orthogonal projection of the point P. w = PM, ρ = PH. The elementary volume dτ(P) is a
cylindrical tube of inner radius ρ, of thickness dρ and length dsP.

{
−→tu(M),−→e1,

−→e2

}
. Each point P is spotted by its coordinate sP on

−→tu axis, and its distance ρ to

its orthogonal projection H on
−→tu axis. Then ∀P ∈ δΓM , PM2 = s2

P + ρ2. So, dτ(P) can be
simplified as an elementary cylindrical tube, of inner radius ρ, of thickness dρ and length dsP.

dτ = 2πρdρ dsP (8)

Substituing (8) in (6), it comes:

−→
Ks(M) =

∫
sP

∫
ρ

2πρdρ
(s2

P + ρ2)1/2
dsP
−→tu(M) (9)

Because the two variables ρ et sP are independants, and because the primitive of the logarithm
function can be defined in 0 according to the continuity definition, the integration is leaded
first on ρ ∈ [0, a], and second on sP ∈ [−λ,+λ]. A very tedious but classical and straight
forward calculus, using hyperbolic trigonometric variable change (sP = a sinh(v)) leads to

−→
Ks(M) = 2πa2F(ξ)

−→tu(M) where ξ =
λ

a
and F(ξ) = ln

(
ξ +

√
1 + ξ2

)
+ξ

(√
1 + ξ2 − ξ

)
(10)

Note that, a priori, the lambda value depends on point M, as the value of ξ. Finally, associat-
ing the relations (5), (7), (10), substituing S = πa2, and noting γ\λ the gamma curve deprived
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of the cylinder of length 2λ, it comes an operationnal formulation for L.

L =
µ0

4π

∫
γ

∫
γ\λ

1
PM
−→
d`(P) ·

−→
d`(M) +

µ0

4π
2
∫
γ

F (ξ(M)) d`(M) (11)

3.3 Numerical formulation

The γ curve is parameterized uniquely by a single real variable, v, physically adimensionned.
Each point P(v) in γ is spotted by its cartesian coordinates {x(v), y(v), z(v)}. Functions x, y, z
are assumed to be known, continuous and differentiable as necessary. We denote by

.
X the

derivation of the quantitiy X according to v. γ curve is discretized with the help of Nt points.
We denote by an integer subscript k all quantities related to the kth point. We denote by δX,
the numerical increment of the quantity X corresponding to the differential element (typically
δX = Xk+1 − Xk). Finally, denoting Fk = F(ξk), Ln the numerical evaluation of the self-
inductance, and for q , k, Dkq =

(
(xk − xq)2 + (yk − yq)2 + (zk − zq)2

)−1/2
, relation (11) can

be numerically expressed as:

Ln =
µ0

4π

Nt∑
k=1

∑
q,k

Dkqδvqδvk

( .
xq

.
xk +

.
yq

.
yk +

.
zq

.
zk

)
+
µ0

4π
2

Nt∑
k=1

Fkδ`k (12)

With this numerical formulation, the value of λk is λk = δ`k. That is to say the number
of points Nt is the single numerical parameter conditionning the computation. Roughly, if
` is the total length of the coil, λk = `/Nt. If Nt is too small, the geometry of the coil is
numerically ill-represented. On the other hand, if it’s too high, the hypothesis allowing to
calculate

−→
Kn as an integral just over the γ curve could becomes invalid. Nt has to be adjusted

for correct evaluation of Ln. As it is often the case in statics domain, there is not a reference
length (as the wavelength could be in radio-frequency regime). That is to say, it is difficult
to have an a priori value of λk (i.e Nt) ensuring a good convergence of the computation.
Practically, a convergence benchmark versus Nt has to be executed for each evaluation of Ln.

4 Validations

We detail here two instances of validation, the first one comes from the bibliography [4] and
allows to present the issues concerning the domain of validity of our numerical formulation.
The second instance is an experimental validation.

4.1 Circular ring with circular section

In the case studied in [4], γ curve is a circle of radius R0 = 0.69 m, the radius of the wire
being a = 1.5 mm. The figure 3 shows the Ln values generated by our model versus Nt (left)
and versus ξ = 2πR0/(a(Nt − 1)) (right) wich is constant along the circle, in this particular
case. Ln reaches a minimum value of Ln = 5, 719 µH for 40 ≥ Nt ≤ 80. This is a stability
zone where Ln is no longer sensitive to Nt variations. Outside this zone, the computation
is not stable, decreasing before, increasing after. The interpretation of this behavior is the
following. When Nt small (≤ 40), there are not enough points Mi to correctly discretize
the geometry of the ring, the magnetic influence of each part of the coil to the others is not
correctly taken into account. On the other hand for Nt high (≥ 80), there are too many points
to ensure the approximation allowing the truncation of the integral leading to equation (11):
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Figure 3. Estimated value Ln for circular ring of radius R0 = 0, 69 m and cross section radius a = 1.5
mm versus Nt (left) or ξ (right).

the Mi points are too close to each other. The self-inductance, La, of such a ring is given in
[4] , page 143, relation (119b), or [5], page 173, beside figure 203. It is reported in relation
(13), with the numerical apply with our value.

La = 4.10−3πR0

[
ln

(
8R0

a

)
− 1, 75

]
=> La = 5, 60 µH

where La is expressed in µH, a and R0 are in centimeters.
(13)

We denote a relative difference around 2% between the admitted formula and the result given
by Inductan in the stability zone. This value has been remarked for several benchmarks on
Inductan, including the evaluation of the self-inductance for a straight wire.

4.2 Experimental validation

We built a metre-scale mock-up, in the laboratory to explorate the possibilities of different
configuration settings of interconnexions of the wire in Vestale and to study the sensitivity of
direct measurements with different materials around the coil. The mok-up is built in view to
be filled with water, or sand or both. There is absolutely no metal part in it. It is totally made
with wood and glue. Wood was chosen as buiding material because of its almost absence
of magnetic properties and its solidity. Another materials as mineral or organic glass would
have been too expansive and too fragile. It is difficult to precisely determine the influence of
the wood because the coil must be fixed on a rigid support to have a reproductible geometric
shape. Then it is quite impossible to have some reference measurement in vacuum for a given
shape.
Nevertheless, according that wood is completely non magnetic (µr = 1), we used it to directly
measure the self-inductance of a coil weirdly shaped. Mockup photographies are presented
in figure 4. The first step of the process consists in describing mathematically the shape of the
coil. It is described by the help of a Fourier serie in polar coordinates, in the plane of the view
of the figure 4. The coefficients are extracted by an image treatment of the photography of
the coil. Because we do not know exactly how the wire is arranged in the plastic sheath, we
assume that the coil follows an helical screw of 12 loops on the z axis (coming to the reader),
of heigth h, with constant vertical step (h/12) and a radius a = 0.69 mm (manufacturer’s
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Figure 4. Laboratory mockup of Vestale. The coil is composed of 12 wires lying in the plastic grey
sheath, interconnected by a set of terminals in the white plastic box right in the wood box. The box is a
square of 1 metre side. We can configure the interconnexions by a set of swithing devices for having all
loops (12), just 6, or just 1. The wire is of radius a = 0.69 mm. The two terminals of the coil are related
to a RLC metre Keysight E4980, working in harmonic regime from 20 Hz to 300 kHz. The coil has two
possible reproductible shapes, just the one ("potatoe shape") used for the validation is shown here.

data). In the figure (5), left, are presented histograms of the direct measurements of the
potatoe shape for four operating frequencies. It appears that the mean value for all frequencies
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Figure 5. Left:Histograms of the measured self-inductance of the potatoe shape for four different
frequencies (23, 83, 512 and 1250 Hz). Right top:Ln versus the number of points of discretization
N/loop for h = 20 mm and a = 0.69 mm, right bottom:Ln versus the number of points of discretization
N/loop for h = 18.9 mm and a = 0.69 mm.

is 430 µH, with variability around 0.5% ([428 − 432]µH). It is reasonable to aim this target
value with Inductan. In the right of the figure (5) are presented the results provided by
Inductan versus the number of points by loop, with two set of numerical entries for h: h =

20 mm (measured diameter of the plastic sheath) on top, an h = 18.9 mm bottom. We remark
that Inductan gives stable results in a zone of N/m value going from 1000 points/loop up
to 2000 points/loop. The minimum value provided by Inductan is Ln = 425µH (top) with
numerical entries corresponding to the measured height h. It is around 1% different from the
direct measured data. This difference can be explained by two complementaries ways. The
first one lies in the difference between the real geometry of the coil in the plastic sheath: the
wire does not fill all the volume of the sheath and moreover, we do not know exactly the actual
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geometry of the wire inside it. To explore this interpretation, we modified the numerical entry
for h at 18.9 mm. This is the bottom curve in the right of the figure 5. We notice that, with
this value, the target of 430µH is reached. The second interpretation of the difference could
be that we did not take into account the self-inductance of the connecting wires between the
RCLmeter and the coil. The classical formula of self-inductance of a straight wire, [4], page
35, Eq. (7), provides a value around ∼ 2.3µH for a length ` = 1.5 m and radius a = 0.69 mm.
Because we have two connecting wires measuring ∼ 1.5 m, reasonnably separed from each
other, we can evaluate roughly the connecting inductance around 2 × 2.3 = 4.6µH. That is
compatible with the difference between measured and numerically evaluated value of L for
the potatoe shape.
To finish this paragraph, let us notice that for the last evaluation on the right curves of figure
5, corresponding to 3000 points/loop (i.e Nt = 36000), the computation time is around 40”
on a standard CPU desktop computer and the memory need is around 14Go of RAM, while
the point corresponding to the stability zone (1500 points/loop i.e Nt=18000), computation
time is around 20” with 4Go of RAM. The code has been developed on the free open source
platform Octave Gnu.

5 Vestale application issues

Vestale shape has been numerically modelled with the same methodology as the mockup (see
section 4.2). Several hundred of points have been landmarked, with the help of the GPS,
and their coordinates have been reported in an arbitrarily cartesian system. The Fourier serie
modelling the shape is computed as explained in section 4.2. The coil is then modelled as an
helicoidal coil of height h ∼ 20 mm, with 12 widings. In that case of study, the current version
of inductan fails to compute, in the way we want, the self-inductance. The stability zone of
Ln versus Nt cannot be reached before overflowing the RAM of our machine (64 Go RAM).
This is due to the fact that for a given point Mk, in the numerical representation of Vestale,
the nearest point is not Mk±1 in the same loop but a point Mk±1L (1L denotes symbolically 1
loop), located in the loop just above or just bottom. To emphasize this point, we give a rough
numerical evaluation of the needed RAM to ensure convergence.
The order of magnitude of the length of 1 loop of Vestale is 300 m. The order of magnitude of
Mk Mk±1L is around h/12, ie: Mk Mk±1L ∼ 1.8 mm. To reach the stability zone, our numerical
experience on mockups leads to consider that the order of magnitude of Mk Mk±1L has to be
the same as Mk Mk±1. With 12 loops, the total needed number of points Nt is also around

Nt ∼ 12 ×
300

1.8 × 103 ∼ 2 × 106.

The number of elements, ND, of the matrix containing Dkq, defined in 12, is around N2
t ∼

4 × 1012. Encoding the floating number in a low 8-bit format, ND is the order of magnitude
of the RAM needed to ensure the computation. It is greater than 1 To of RAM. It is not yet a
standard device on desktop computer.
Our interpretation of the failure of the current version in computing self-inductance of Vestale
is confirmed by the fact that Inductan provides converging results for the evaluation of the
self inductance for just 1 loop of Vestale, in the same numerical conditions as the mockups
validation ones.
Because the main idea of Inductan is to provide, robust, fast and light numerical formulation,
we don’t aim to buy RAM and super-computers to overpass this difficulty. Two ways are
under study for optimizing the numerical formulation. The first one consists in trying to
decrease the needed number of points integration method by weighting points as Gauss one
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for instance [14]. The other one, more promising in term of extension of number of loops is
two compute the self-inductance of 1 loop and the mutual cross inductance between all the
loops.

6 Conclusion

We have presented the theoretical and the numerical implementation of a numerical tool,
named Inductan, allowing evaluation of arbitrarily coil shaped self-inductance. Some issues
of the numerical process have been discussed with the help of validating tests using direct
measurements. Inductan is well adapted for aspect ratios coils corresponding with meter
scaled coils, with radius wire and interspace typically around the millimeter size. In the
very next future, it will be usefull to find empiric criteria for avoiding convergences tests
a posteriori of the calculation versus Nt, using parametric studies, and involving the other
possible shape of the mock-ip coil. The challenge will be then to adapt Inductan for larger
coil, with typical size of hundred meters as Vestale is. In its current formulation, it needs too
many points of discretization of the coil to provide reliable results for such a coil. To reach
this goal, some theoretical reformulations have to be done, particularly approximations about
consecutive loops interactions. Then in the far future, it will be great to integrate Inductan in
a complete model taking into account the ground interface.
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