
 

Very short-term forecasting of power demand of 
big dynamics objects 

Mirosław Parol
1,*

, Paweł Piotrowski
1
, and Mariusz Piotrowski

2
 
 

1Warsaw University of Technology, Faculty of Electrical Engineering, Warszawa, Poland  
2Electrum Sp. z o. o., Bialystok, Poland  

Abstract. The issue of very short-term forecasting is gaining more and 

more importance. It covers both the subject of power demand forecasting 

and forecasting of power generated in renewable energy sources. In 

particular, for the reason of necessity of ensuring reliable electricity 

supplies to consumers, it is very important in small energy micro-systems, 

which are commonly called microgrids. Statistical analysis of data for a 

sample big dynamics low voltage object will be presented in this paper. 

The object, in paper author’s opinion, belongs to a class of objects with 

difficulties in forecasting, in case of very short-term horizon. Moreover, 

forecasting methods, which can be applied to this type of forecasts, will be 

shortly characterized. Then results of sample very short-term ex post 

forecasts of power demand provided by several selected forecasting 

methods will be presented, as well as some qualitative analysis of obtained 

forecasts will be carried out. At the end of the paper observations and 

conclusions concerning analyzed subject, i.e. very short-term forecasting 

of power demand of big dynamics objects, will be presented. 

1 Introduction 

The issue of very short-term power demand forecasting is gaining more and more 

importance. In particular, for the reason of necessity of ensuring reliable electricity supplies 

to consumers, it is very important in small energy micro-systems, which are commonly 

called microgrids. 

The problem of very short-term forecasting of the power demands has been discussed in 

several publications, e.g. [1-6]. Very comprehensive overview of forecasting methods, 

taking into account ultra- and short-term time horizon has been included in [7]. In the 

overview among others some papers dealing with the problems of time horizons being 

considered, as well as different areas and location types (small city, microgrid, smart 

building) have been presented. Mainly different kinds of neural networks were used in the 

papers for forecasting, such as Multi-layer Perceptron (MLP), Support Vector Machine 

(SVM), Support Vector Regression (SVR) and Self-Organizing Map (SOM).  

In the publications being analyzed, the objects of big dynamics in the power demand 

level are very rarely the subject of very short-term forecasting activities. This is the clue 

and the key aspect of this paper. Very short-term forecasts will be related to the component 
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of microgrid [6] of significant dynamics in the level of received power. One of the main 

technological components of sewage treatment plant plays the role of an object showing 

considerable dynamics in the level of power demand. Some controllable and non-

controllable loads, together with some generating units are also the part of the microgrid. 

In the further part of the paper the results of sample very short-term forecasting 

processes for the presented component of microgrid, obtained with the use of the following 

methods (models): naive model, weighted moving average models, auto-regression models, 

multiple linear regression models, MLP type neural networks and Radial Basis Function 

type neural networks will be given. The short description of those methods is presented 

below. 

The naive method. In this method it is most often assumed, that the value of the variable 

being explained (forecasted) by the model in time t will be the same as in time t - 1 [8]. In 

most cases naive method and its results can serve as a reference point in the process of 

evaluation of other forecasting methods. 

Weighted moving average models. The approach making use of these models is based on 

the following equations set [8]: 
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where: yt
*
 – value of the forecast for the variable determined for time t, yt-1 – actual value of 

the variable for which forecasting takes place in time i, k – smoothing factor, wi-t+k+1 – 

weight of the value of the variable being forecast in time i. 

Auto-regression model (AR). This model bases on the assumption, that the subsequent 

values of the variable being forecast are correlated, that is [8]: 

tptpttt eyyyy    ...22110

*      (2) 

where: yt
*
 – value of the forecast for the variable determined for time t; yt-1, yt-2,…,yt-p –

values of the variable being forecast in time t - 1, t - 2,…,t – p; φ0, φ1, φ2,…,φp – parameters 

of the model; p – delay; et – error in time t. 

Multiple linear regression (MLR). In the methods basing on MLR for the purpose of 

determination of the values of explained variable different kinds of explanatory variables 

are used, including the past values of both the explained variable and explanatory variables 

tmtmntnntnttt xxyyyy    ...... 1122110     (3) 

where: yt – explained variable in time t; x1t, x2t, xmt – explanatory variables in time t; α0, α1, 

α2, αn+m – parameters of the model, n+m – the number of explanatory variables, εt – error in 

time t. 

Multi-layer Perceptron. It is a unidirectional neural network (trained with supervision) 

consisting of [9]: input layer, several hidden layers (usually not more than two) and output 

layer. During the our research neurons in the hidden layer had a non-linear (hyperbolic 

tangent) activation function, while neurons in the output layer had a linear function. 

RBF type network. It is also a unidirectional neural network consisting of input layer, 

hidden (radial) layer and output layer [9]. Neurons in the hidden layer do not have any 

weights assigned, but radial base functions instead (during the our research Gaussian type 

functions were used). Neurons in the output layer had a linear activation function. 

The parameters (weights) of individual models were selected using optimization 

methods (BFGS algorithm for MLP networks, RBFT algorithm for RBF networks and 

Newton's algorithm for other models for which the values of parameters need to be chosen). 
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2 Statistical analysis of data 

Statistical analysis  is based on data from one day from December and one day from June 

(the only available data). The daily time series includes 8640 periods of 10 seconds. In the 

data from the December day there is a lack of 169 data. Missing data from the December 

day was supplemented with information about values neighboring with missing ones. In the 

data from the June day there is a lack of 578 data. Missing data occur in quite random 

places of the time series. In a few cases it is the lack of a longer fragment of the time series 

(several minutes). Data from the December day and the June day were jointly normalized 

for anonymisation to relative units (1 relative unit is equal to an average value from time 

series). Table 1 shows selected statistical measures of two mentioned time series of the 

power demand. 

Table 1. Statistical measures of two time series of the power demand.  Source: Own elaboration. 

Statistical measures December day June day 

The length of the time series 8472 8063 

Max power [p.u.] 6.2690 5.5542 

Min power [p.u.] 0.0035 0.0033 

The ratio of maximum power to minimum power 1791 1683 

Average power [p.u.] 1.0876 0.9079 

Median [p.u.] 0.9317 0.8712 

Standard deviation [p.u.] 0.7759 0.8745 

Variation [-] 0.6020 0.7648 

Coefficient of variation [%] 71.3372 96.3149 

Skewness [-] 0.2339 0.8347 

Kurtosis [-] -0.3041 0.3512 

 

The time series of the December day has characteristics significantly different from the 

June day. The time series from the June day has a smaller mean value but a greater variance 

(over 25%) than the time series from the December day. Probably forecast errors for the 

June day will be higher than for the December day, assuming that the dominant component 

is the random component. The minimum values from both time series are almost identical 

but the maximum value of the power demand is higher for the December day. The 

Kolmogorov-Smirnov and Lilliefors tests show that the both time series of the power 

demands do not have a normal distribution. Figure 1 shows the percentage distribution of 

cases in both time series depending on the power demand. 

 

Fig. 1. The percentage distribution of cases in both time series depending on the power demand value. 

Source: Own elaboration. 

The power demand below 1 p.u. is definitely dominant one in both time series. As much 

as 20% of the power demand from the whole time series are very small values, below 0.05 

p.u. (this is at least 20 times smaller than the average value). 
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Figure 2 shows the daily time series of the power demand for the December day and the 

June day. Figure 3 shows in turn two parts of the day from December (period from 3:30 to 

4:00 am and the period from 9:30 to 10:00 am). Big changes dynamics (rapid jumps) in the 

power demand is clearly visible. 

For both time series (December day and June day), the occurrence of periods of 

different length with a very similar power demand is characteristic. These are values from 

very low to medium power demand (up to 1 p.u. for the June day) and large power demand 

(up to 2 p.u for the December day). These periods are usually divided by shorter periods of 

much bigger power demand (up to 2 orders of magnitude larger). 

 

 

Fig. 2. The daily time series of the power demand for the December day and the June day. Source: 

Own elaboration. 

 

Fig. 3. Two selected 30-minute periods of the power demand in the December day. Source: Own 

elaboration. 

The seasonality problem of the time series of the power demand was not analyzed due 

to the lack of more amount of data. For the December day, it was examined whether there 

was daily variation in the power demand in 1-hour periods (see Fig. 4). For each hour the 

average 10-second power demand was calculated. A polynomial illustrating the best daily 

variation trend was selected. The biggest value of the determination coefficient R
2
 equal to 

0.2671 was obtained for the polynomial degree 5 (polynomials from degree 2 to 6 were 

analyzed). The value of the determination coefficient is very low. The function of 

polynomial degree 5 explains only less than 27% of the variability of the explanatory 

variable. The polynomial shape shows that probably (the analysis concerned the only one 

day) the energy consumer has 2 periods of increased power demand during the day. The 

first peak is from 6 am to 14 pm. The second peak is from 22 pm to 24 pm. The power 

 , 0 2019)E3S Web of Conferences https://doi.org/10.1051/e3sconf /201984010071084 0

PE 2018
7 (

4



demand lower than the average value (night valley) occurs from 1 am to 4  am and from 5 

pm to 7 pm (evening valley). 

 

Fig. 4. The daily variation of the power demand in 1-hour periods. Source: Own elaboration. 

For the December day, the autocorrelation coefficient dynamically decreases from the 

value 0.946 (1 period back) to the value 0.300 (90 periods back, i.e. 15 minutes) (see Fig. 

5). A surprising and difficult to explain is the temporary increase in the value of the 

autocorrelation coefficient up to the value of 0.439 (150 periods back, i.e. 25 minutes). 

After 240 periods back (40 minutes), the value of the autocorrelation coefficient is equal to 

almost zero. 

For the December day, the partial autocorrelation coefficient is statistically significant 

(5% significance level) only for the first three values and several single values distant from 

each other (see Fig. 5). Very big values of the partial autocorrelation coefficient for the first 

three periods back (in turn: 0.9464, 0.9114 and 0.8999) and quite big negative value equal 

to -0.3590 for 33 periods back, i.e. 5 minutes and 30 seconds, is noteworthy. 

The Table 2 shows for the December day the values of Pearson linear correlation 

coefficients between 10-second power demand and considered explanatory variables All 

correlation coefficients are statistically significant (5% level of significance). It is 

noteworthy that the sum of the power demand values from the period t-1 with the weight 

0.75 and the period t-2 with the weight 0.25 (AWE) has maximum correlation coefficient 

from all potentially explanatory variables. Moreover the 24-hour profile of the variation of 

power demand (FUNC) seems to be definitely much better explanatory variable than the 

hour of power demand (HOU). 

 

Fig. 5. Autocorrelation function (ACF) and partial autocorrelation function (PACF) of time series in 

the December day. Source: Own elaboration. 

Table 2. The values of Pearson linear correlation coefficients between 10-second power demand and 

considered explanatory variables. Source: Own elaboration. 
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The code 

of 

variable 

Considered explanatory variables 

Pearson linear 

correlation 

coefficient  

POW1 10-second power demand in period t-1 0.9464 

POW2 10-second power demand in period t-2 0.9114 

POW3 10-second power demand in period t-3 0.8999 

POW4 10-second power demand in period t-4 0.8882 

POW5 10-second power demand in period t-5 0.8773 

POW6 10-second power demand in period t-6 0.8657 

POW7 10-second power demand in period t-7 0.8539 

POW8 10-second power demand in period t-8 0.8423 

FUNC 24-hour profile of the variation of power demand - the value of the 

polynomial function of degree 5 of power demand in a given hour 

0.3168 

AVE3 The average value of power demand  from periods t-1, t-2 and t-3 0.9402 

AVE2 The average value of power demand  from periods t-1 and t-2 0.9418 

AWE The sum of the power demand values from the period t-1 with the weight 

0.75 and the period t-2 with the weight 0.25 
0.9474 

HOU The hour (number from the range 1..24) of power demand 0.0070 

3 Comparative analysis of very short-term forecasting methods 
for power demand of big dynamics objects 

Comparative analysis was performed using data from the December day. All data were 

divided into sets for parameters (weights) estimation of a given model (80% of randomly 

selected data due to ensuring maximum representativeness of the process) and data for 

testing the quality of "ex post" forecasts (20% of randomly selected data). 

In order to have a broader, multi-aspect view of the quality of individual forecasting 

models, four measures of “ex-post” forecasts quality were used: MAPE error, SOS error, 

maximum percentage error and Pearson's linear correlation coefficient. 

In the case of MLP networks, the SOS error was minimized, while in other models the 

minimization of the SOS error, MAPE and the maximization of the linear correlation 

coefficient were tested. 

The selection of the most favorable explanatory variables for the MLP network was 

made by using the “top-down” method. Undesirable variables (not providing additional 

information to the model) were eliminated stepwise. The selection of explanatory variables 

for elimination is supported by the sensitivity analysis of neural networks. In the case of 

multiple regression models, information about the most advantageous sets of explanatory 

variables previously found for the MLP network was used. 

Table 3 shows characteristic of all tested prognostic models. The description of neural 

network models (MLP/RBF) is as follows: number of neural network inputs, number of 

neurons in the hidden layer and number of outputs. For the models of neural networks, only 

the models with the most favorable structure are given in the Table 3 (the number of 

neurons hidden in a fairly wide range was tested). In addition, for neural network models, 

the validity of each explanatory variable calculated on the basis of the sensitivity analysis is 

given in the descriptive field (column) of the given explanatory variable. Validity (number) 

is the quotient of the neural network error for which the given variable has been replaced in 

all sets by its average value by the neural network error calculated for the whole given set 

of explanatory variables. In Table 3 the explanatory variables probably undesirable in a 

given model are marked in italics. The most important explanatory variable in a given 

model is marked as bold. 

In the case of the naive model (NAIVE), multiple regression models (M.REGR), auto-

regression models (AR) and moving average weighted models (MOV.A), the values of 

parameters of this models assigned to each explanatory variables are given in the 

descriptive fields (columns) of explanatory variables. Variables with codes FUNC, POW1, 
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POW2, POW3, POW4 and POW5 create the proper set of explanatory variables for MLP 

model. The set using additionally variables with AWE, AVE3 and ACE2 codes results in a 

similar quality of forecasts. The use of both described sets of explanatory variables for 

multiple regression models has also proved to be the most advantageous. Definitely the 

most important explanatory variable in almost all models is the power value from the t-1 

period (POW1). 

Table 3. Characteristic of all tested prognostic models. Source: Own elaboration. 

The model code / 

description / 

error function 

Explanatory variables in the model 

FUNC HOU AWE AVE3 AVE2 POW1 POW2 POW3 POW4 POW5 POW6 POW7 POW8 

NAIVE /  /  - - - - - 1,0000 - - - - - - - 

MLP1 / 13-10-1 / SOS 1.0166 1.0031 3.7508 1.1682 1.5094 3.3204 2.4477 1.3586 1.0103 1.0230 1.0134 1.0025 1.0049 

MLP2 / 10-8-1 / SOS 1.0388 - 3.9480 1.4689 1.0976 3.9268 2.7330 1.5004 1.0077 1.0360 1.0056 - - 

MLP3 / 7-6-1 / SOS 1.0152 - 3.9812 1.4850 1.5011 3.8727 3.0880 1.6301 - - - - - 

MLP4 / 6-6-1 / SOS 1.0203 - - 1.7375 2.8798 6.2419 2.6974 1.7820 - - - - - 

MLP5 / 4-4-1 / SOS 1.0136 - - - - 10.4000 1.3030 2.7197 - - - - - 

MLP6 / 6-6-1 / SOS 1.0151 - - - - 11.3303 1.2782 1.5836 1.0129 1.0336 - - - 

MLP7 / 7-6-1 / SOS 1.0172 - - - - 11.2997 1.6829 1.9435 1.0155 1.0274 1.0089 - - 

MLP8 / 9-8-1 / SOS 1.0256 - 3.5493 1.1639 1.5764 4.3138 2.7429 1.5676 1.0142 1.0227 - - - 

RBF / 6-8-1 / SOS 0.0024 - - - - 0.0708 0.0698 0.0698 0.0604 0.0722 - - - 

M.REGR1 / / cor.coef. 0.0324 - 0.2713 0.1139 0.1083 0.4342 -0.2176 0.1252 0.0352 0.0509 0.0435 - - 

M.REGR1a /with 

constant / cor.coef 
0.0324 - 0.2713 0.1139 0.1083 0.4342 -0.2176 0.1252 0.0352 0.0509 0.0435 - - 

M.REGR2 / / SOS 0.0303 - 0.2726 0.1145 0.1089 0.4363 -0.2186 0.1258 0.0354 0.0511 0.0437 - - 

M.REGR3 / / MAPE 0.0004 - 0.3676 0.1043 0.1738 0.5615 -0.2139 -0.034 0.0000 0.0001 0.0000 - - 

M.REGR4 / / cor.coef. 0.0204 - - - - 0.4422 -0.0337 0.1022 0.0211 0.0488 - - - 

M.REGR5 / / SOS 0.0317 - - - - 0.7374 -0.0562 0.1705 0.0352 0.0814 - - - 

M.REGR6 / / MAPE 0.0004 - - - - 0.9590 -0.0003 0.0003 -0.0001 0.0001 - - - 

AR(3)1/  p=3 / cor.coef - - - - - 0.7907 -0.0471 0.2471 - - - - - 

AR(5)1/  p=5 / cor.coef - - - - - 0.7619 -0.0576 0.1763 0.0367 0.0849 - - - 

AR(5)2 /  p=5 / SOS - - - - - 0.7445 -0.0542 0.1750 0.0368 0.0887 - - - 

AR(5)3 /  p=5 / MAPE - - - - - 0.9889 -0.0001 0.0001 0.0000 0.0001 - - - 

MOV.A1 /k=3/ cor.coef - - - - - 0.3333 0.3333 0.3333 - - - - - 

MOV.A2 /k=3/ cor.coef - - - - - 0.7750 0.0000 0.2250 - - - - - 

MOV.A3 /k=4/ cor.coef - - - - - 0.7477 0.0000 0.1471 0.1052 - - - - 

MOV.A4 /k=5/ cor.coef - - - - - 0.7331 0.0000 0.1454 0.0436 0.0779 - - - 

Table 4 presents the results of "ex post" forecasts of the tested forecasting models. 

Significantly worse results in a given error category are marked in italics. While 

significantly better results in a given error category are marked as bold. Figure 6 shows the 

chosen forecast results for 71 10-second periods from hour 3:33. 

The obtained forecast errors of the tested models are large (the smallest MAPE error 

was slightly above 107%), but this is a normal situation for a process with such a large and 

frequent changes dynamics and a large random component. However, compared to the 

simplest and the worst naive model, the improvement in the quality of forecasts of the best 

models is very significant (more than doubling the size of the MAPE error and the SOS 

error). 

It is not possible to unambiguously choose the best model due to the use of four 

measures of forecast quality with slightly different properties. 

The most favorable forecast quality measures have MLP models (the smallest maximum 

percentage errors, the smallest SOS errors and the largest correlation coefficients). MAPE 

errors of MLP models (overestimation of power demand values especially for very small 

values) are significantly bigger than in some other models, e.g. moving average weighted 

models or autoregressive models. MLP models have the worst forecasts by very low power 

demand (MAPE errors typically above 200%) (see Fig.6). This is due to the fact that the 

SOS error is minimized by the neural network during the learning. The difference between 

the two very small values of power demand (actual value and forecast) is a very small 

number, however the MLP models tries to minimize the large SOS errors (from its point of 
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view) occurring for much bigger power demand values (see Fig.6). Multiple regression 

models and autoregressive models in which MAPE error is minimized have much smaller 

MAPE errors of forecasts than MLP models. However, in these cases the SOS errors of 

forecasts of these models are significantly worse than in the MLP models. A very 

characteristic phenomenon for multiple regression models and autoregressive models are 

very accurate forecasts of very small power demand values, but this is done at the expense 

of the forecasts accuracy for bigger power demand values (see Fig.6). On the other hand, 

what is surprising, the models of the moving average weighed despite the use of the 

correlation coefficient as the maximized error function have MAPE errors of forecasts quite 

much smaller than in the MLP models. 

Table 4. The results of "ex post" forecasts of the tested forecasting models. Source: Own elaboration.  

The model code / description / error function 

Error measure 

MAPE 

[%] 

SOS 

[(p.u.)2] 
Max. error [%] 

Correlation 

coefficient 

NAIVE /  /  239.77 249.55 48590 0.8800 

MLP1 / 13-10-1 / SOS 196.22 99.67 26347 0.9509 

MLP2 / 10-8-1 / SOS 200.65 97.15 29491 0.9522 

MLP3 / 7-6-1 / SOS 178.88 98.33 27443 0.9516 

MLP4 / 6-6-1 / SOS 187.39 98.23 26919 0.9516 

MLP5 / 4-4-1 / SOS 181.64 99.52 26733 0.9510 

MLP6 / 6-6-1 / SOS 172.04 98.65 25832 0.9514 

MLP7 / 7-6-1 / SOS 187.63 97.97 27061 0.9517 

MLP8 / 9-8-1 / SOS 186.17 97.51 27231 0.9520 

RBF / 6-8-1 / SOS 2.2*107 9.5*1010 4.5*108 0.4887 

M.REGR1 / / cor.coef. 218.66 109.52 33579 0.9459 

M.REGR1a /with constant / cor.coef 474.87 124.69 35786 0.9459 

M.REGR2 / / SOS 214.02 109.48 33689 0.9459 

M.REGR3 / / MAPE 107.12 124.49 43894 0.9400 

M.REGR4 / / cor.coef. 149.99 567.91 20336 0.9460 

M.REGR5 / / SOS 213.66 109.32 33925 0.9460 

M.REGR6 / / MAPE 107.12 124.48 43900 0.9400 

AR(3)1/  p=3 / cor.coef 120.75 111.97 35676 0.9452 

AR(5)1/  p=5 / cor.coef 138.65 110.47 34240 0.9460 

AR(5)2 /  p=5 / SOS 138.47 110.08 33482 0.9460 

AR(5)3 /  p=5 / MAPE 108.05 123.47 45268 0.9400 

MOV.A1 /k=3/ cor.coef 131.86 128.83 25358 0.9367 

MOV.A2 /k=3/ cor.coef 120.82 112.31 35474 0.9452 

MOV.A3 /k=4/ cor.coef 135.19 111.74 34225 0.9453 

MOV.A4 /k=5/ cor.coef 137.63 110.42 33558 0.9459 

 

 

Fig. 6. The chosen forecast results for 71 10-second periods from hour 3:33. Source: Own 

elaboration. 

It is also worth adding that in the autoregression models, the addition of a constant 

significantly worsened the forecast results. In moving average weighed models, the increase 

of k (number of back periods in model) reduced the SOS error of forecasts but 
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simultaneously increased the MAPE error of forecasts. An unexpected phenomenon is also 

fact that in all models of the moving average weighted after the estimation of the model 

parameters, the parameter related to the value of the power demand from the period t-2 is 

equal to almost zero. 

It seems that from the point of view of the purposes of the forecasts it is more important 

to obtain greater accuracy of forecasts for the value of power demand other than very small 

values. Therefore, the measure of the SOS error of forecasts should be considered as a 

priority in our opinion. 

However, if we treat SOS and MAPE errors of forecasts as equivalent numbers (without 

units) then the most advantageous models of the same quality are: the multiple regression 

model with the code M.REGR6 and the autoregression model having the code AR(5)3, thus 

quite simple construction models. In both models, however, the MAPE error is minimized. 

It is worth adding, which is very characteristic that in the case of both models the most 

important was the parameter assigned to the value of power demand from period t-1. 

Information on the power demand from periods from t-2 to t-5 has almost zero importance 

for these models, which makes these models very similar to the naive model, which has 

however significantly bigger forecast errors. 

Noteworthy is also a very simple moving average weighed model (k = 3) due to the 

relatively small forecast errors of both MAPE and SOS (the sum of both errors as numbers 

is almost as small as for the models M.REGR6 and AR(5)3). 

None of the forecasting models was able to effectively perform the forecasts for single 

10-second very large increases in the power demand - the phenomenon is probably entirely 

random. 

Definitely the worst model is the RBF model. In practice, this model is entirely not 

suitable for this type of forecasts. 

4 Conclusions 

The issue of very short-term power demand forecasting of big dynamics object was the 

subject of this paper. First detailed statistical analysis of available measurement data has 

been carried out. Then results of sample forecasts obtained by means of 6 selected methods 

(models) have been presented and compared. 

Four measures of “ex-post” forecasts quality were used: MAPE error, SOS error, 

maximum percentage error and Pearson's linear correlation coefficient. The most important 

explanatory variable in almost all tested models was the value of power level from the t-1 

period of time. 

It is not possible to unambiguously choose the best model due to the use of these four 

measures of forecast quality with slightly different properties. 

The most favorable values of forecast quality measures can be observed for MLP models 

(the smallest maximum percentage errors, the smallest SOS errors and the largest 

correlation coefficients). MAPE errors of MLP models are significantly bigger than in some 

other models. Multiple regression models and autoregressive models have much smaller 

MAPE errors of forecasts than MLP models. However, in these cases the SOS errors of 

forecasts of these models are significantly worse than in the MLP models. The models of 

the weighted moving average have MAPE errors of forecasts much smaller than in the 

MLP models. 

The obtained forecast errors of the tested models are large (the smallest MAPE error was 

slightly above 107%). However, compared to the simplest naive model, the improvement in 

the quality of forecasts of the best models is very significant. 

If we treat SOS and MAPE errors of forecasts as equivalent numbers (without units) 

then the most advantageous models of the same quality are: the multiple regression model 
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with the code M.REGR6 and the auto-regression model having the code AR(5)3. In the 

case of both models the most important was the parameter assigned to the value of power 

demand from period t-1. A very simple weighted moving average model (k = 3) results in 

relatively small forecast errors of both MAPE and SOS. Definitely the worst model is the 

RBF model. 

None of the forecasting models was able to effectively perform the forecasts for single 

10-second long very large increases in the power demand. 

 
Data set used for calculations in this paper have been collected during the realization of the scientific 

project being a part of the ERA-Net Smart Grid Plus initiative, having a support from the European 

Union's Horizon 2020 research and innovation programme. 
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