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Abstract. The article describes the NN-K-SVD method based on the useof sparse coding and the singular value decomposition to specific values.An example of using the method is the compression of load profiles. Theexperiment of compression of 125022 power load profiles has been carriedout with the use of registered profiles in households and small offices. Twomatrices: patterns (atoms) and scaling factors are the result of the discussedalgorithm. Features of the created matrices, which can be used in thecreation of fast power demand forecasting systems, have beencharacterized.

1 Introduction
The development of low and medium voltage power network infrastructure, especially insuburban and rural areas, is connected, among others, with the connection of new small andmedium-sized generation sources and prosumer installations [1,2]. The connection of theabove-mentioned generation sources to the power system, in particular of local operation,causes that part or all of the electricity generated by these sources is consumed on a regularbasis, can be stored or sent to the transmission network. In this situation, the energy flowchanges significantly, which affects the power demand in the power station (power demandprofile) [1]. In addition, electricity consumers from households (as well as companies)often change their habits, so as to use electricity generated locally (e.g. from renewableenergy sources) as much as possible, which can significantly reduce their purchase cost.This situation requires a different approach to forecasting the demand for the power ofindividual consumers (households or companies) but also the demand for power in a givenarea of the power station operation. This requires continuous monitoring of energygenerated by sources, stored energy, demand for the power of recipients as well as powerdemand in a given area, which translates into the collection and processing of a significantamount of data [3].There are and are being developed all the time wired and wireless systems of the SmartMetering type with local and remote registration, which collect huge amounts ofmeasurement data, including load profiles of electricity consumers [4,5]. The amount ofdata collected is successively increasing, which often prevents quick and effective analysis,
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e.g. for prognostic purposes or to offer recipients dynamic tariffs prepared on the basis oftheir archival profiles.One of the solutions that can be used to quickly analyze the large amounts of datacollected, e.g. power load profiles, is their compression. In the literature [6] you can findsuggestions for the use of various types of compression, but most of the proposals requiretime-consuming decompression of the load profile which prevents quick and effective dataanalysis and processing. Among the various solutions, one can find a proposal for the use ofthe sparse coding method using the SVD (Singular Value Decomposition) method, i.e. thedistribution of the data into singular values [7,8,9]. The proposed version of this algorithmis the NN-K-SVD (Non Negative K-SVD) version, which only applies to non-negativevalues. In this method, estimating the shape of the load profile does not require time-consuming decompression, but only summing up the scaled up several model componentscalled atoms.This paper discusses the use of the NN-K-SVD compression method for power loadprofiles, presents the results of the experiment, including exemplary reference atoms andreconstructed profiles, discusses problems related to profile compression and characterizesthe use of the created atom dictionary and matrix of scaling factors in the demandforecasting system for power.
2 Compression with the use of NN-K-SVD method
2.1 General idea of compression with the use of sparse coding
The principle of compression using the sparse coding method used by the NN-K-SVDalgorithm will be presented on the example of compression of power load profiles.The general principle of compression and decompression using the sparse codingmethod consists of two stages [7,9]. In the first stage, a base of patterns, called atoms, iscreated. Then the compressed profiles are distributed over the sum of the patterns. Patternnumbers and values of scaling factors of these patterns are stored. Reconstructing a singlecompressed profile is a simple linear combination of selected profiles and their scalingvalues. The principle of using the profile compression and decompression algorithm isshown in Figure 1.

Fig. 1. General principle of compression and decompression method with sparse coding [9].
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For several or even several thousand profiles it is required to store information about theatoms used for compression and their scaling factors. This is done in properly preparedmatrices. The reconstruction of a single compressed profile is a linear combination ofappropriate atoms and scaling coefficients as represented by the expression (1):

å
=

×»
K

k kiki adx
1 , (1)

where, xi – restored i-th profile, dk – k-th atom of the pattern, ai,k – scaling coefficients for i-th reconstructed profile and k-th atom, K - number of atoms.
In Figure 1, the compressed profile is represented by three atoms: first, third and fourthwith scaling factors: 0.53, 0.21 and 0.16 respectively. Generally, in the matrix notation, theexpression describing the reproduction of many profiles placed in the matrix is shown inthe following expression:

X » D × A (2)
where, X – matrix of restored load profiles, D – matrix of dictionary atoms, A – matrix ofscaling factors.

What is gained using such a compression method? If one daily load profile is averagedevery 15 minutes, the 96 values must be stored (registered). Assuming that this profile willbe archived using only 3 patterns with the use of only 3 scaling factors, it can be easilystated that 96 values are represented by only 6 values. This means a compression ratio of16:1. In some cases, it is required to register the load profile with minute averaging whichwill increase the number of recorded values to 1440. In this case, three atoms and theirscaling factors give a compression ratio of 240:1.The problem is the fidelity of the profile reconstruction. When increasing thecompression rate, i.e. reducing the number of atoms used, the reconstructed profile can beheavily distorted. However, if the compression ratio is reduced, the profile will bereconstructed correctly but the data number will decrease by a small amount, and thenprofile compression is not indicated. The most important in this case is the compromisebetween the degree of compression and the accuracy of the reconstruction of thecompressed profiles. These issues are discussed in detail in [9].
2.2 Example of use NN-K-SVD algorithm to load profile compression
The method of using the NN-K-SVD method for compression of power load profiles withthe use of sparse coding is described in detail in [9]. It consists of two stages. The first isnamed Sparse Coding stage, the second is Dictionary update.In the first stage, in order to determine the matrix of scaling factors A from theexpression 2 assuming a given number of scaling factors, the sparse coding method is used.Electric power load profiles take positive values, therefore methods are used that setcoefficients only as non-negative [10]. The reproduction error, as the target function, shouldbe minimized assuming the unchanging shape of atoms.The second stage depends on correcting, by the SVD method, the shape of atoms andmatching them to the shapes of archived profiles. The first and second stages are performedwith the predetermined number J times or until the assumed minimum error value.
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In order to present the operation of the method, an experiment was carried out duringwhich 127750 electric power load profiles, hourly averaged, registered mainly inhouseholds and small offices, were subjected to compression. During the initial dataprocessing, 2728 profiles with all zero values and incomplete profiles in which all valueswere not recorded were removed. The next profiles have been normalized.The following compression parameters have been assumed:• size of the atom dictionary K: 60 and 100,• number of compressing / reconstructing atoms s: 1 and 5,• number of iterations of the J: 5 algorithm.Below, in Figures 2-5, the results of the NN-K-SVD method are graphically presentedin the form of selected best-recovered profiles. The black solid line shows the original loadprofile, while the red dotted line shows the restored profile. The profile recovery error wasdetermined by calculating the RMS Mean Square Error (RMSE) error from the followingexpression:
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where, M – numbers of profiles, xi – i-th original load profile, ix̂ - i-th reconstructed load
profile.

Table 1 shows the comparison of RMSE errors of minimum, maximum and averageprofile reconstruction for different compression variants.
Table 1. RMSE error values after reconstruction of load profiles.

RMSE Compression parameters: K / s
60 / 1 60 / 5 100 / 1 100 / 5

min 0,0097 0,0054 0,0081 0,0055
max 0,1679 0,1019 0,1087 0,1019
mean 0,0435 0,0284 0,0433 0,0285

As might be expected, increasing the number of atoms from which a compressedprofile is reconstructed results in less errors. It is important that increasing the number ofdictionary atoms does not significantly improve the quality of the profile beingreconstructed. It is important when optimizing the method aimed at increasing thecompression rate without reducing the accuracy of the reconstruction using a smallernumber of standard atoms.
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Fig. 2. Example profiles before compression and after reconstruction (K = 60, s = 1).

Fig. 3. Example profiles before compression and after reconstruction (K = 60, s = 5).

Fig. 4. Example profiles before compression and after reconstruction (K = 100, s = 1).
Both for profiles composed of 1 and 5 atoms, the shape of the pattern can be estimated.However, for compression using 5 atoms, more complex profiles are well reconstructed, asshown in Figures 3 and 5. Figures 2 and 4 show that the trend of the profiles beingreconstructed is not quick-changing, that is, the slow-changing profiles reproducedaccurately. Therefore, the most important aspect of using this method are formed atoms,because their shape has the greatest impact on the accuracy of profile reconstruction.
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Fig. 5. Example profiles before compression and after reconstruction(K = 100, s = 5).
2.3 Base atoms
As mentioned earlier, one of the key elements of the presented compression algorithm is thecreated atom base. The accuracy of the reconstruction of compressed profiles depends fromthe amount and shape of atoms. In the example presented in chapter 2.2, the created base ofatoms consists of 60 and 100 elements. The shapes of all the atoms that were created duringthe tests are shown in Figures 6-7. However, selected profiles from the 100 elementdictionary are shown in Figure 8.

Fig. 6. All atoms of the 60-element dictionary.

 , 0 2019)E3S Web of Conferences https://doi.org/10.1051/e3sconf /201984010031084 0

PE 2018
3 (

6



Fig. 7. All atoms of the 100-element dictionary.

Fig. 8. Selected example atoms of the 100-element dictionary.
Based on figures 6-8, it can be concluded that using the shape of the atom used tocompress the original load profile, as well as the scaling factor, you can estimate thepotential behaviour of the electricity consumer in the future. In this case, it is not necessaryto store all several or even several hundred thousands archival profiles, but only a fewvalues referring to the atom number and the scaling factor value.

3 The possibility of using atoms and scaling coefficients inforecasting system
Prediction algorithms, in particular ultra-short-term power demand, are based on varioustypes of information, including network configuration, meteorological data, date and time,and archival data recorded in the form of e.g. load profiles [11]. As mentioned in chapter 1and 2, the dynamic development of power grids and new services, e.g. offering dynamictariffs to consumers, forces a new approach to management of these networks, in particularthe collection of a significant amount of data and their quick processing. Measurements andregistration of power or electricity performed every hour, 30 or even 15 minutes may notallow quick response to dynamic changes in the power demand. On the market there aremore and more electricity meters with minute averaging which solves the problem of theaccuracy of profile registration but at the same time forces the storage and processing ofmore and more data. In this situation, it is advisable to use data compression methods,including those that allow quick access to them without time-consuming decompression.
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An example of such compression is the NN-K-SVD method described above. Theadvantage of this method is the quick access to information based on the analysis of thelocation of non-zero scaling factors in the matrix A and the analysis of the values of thesecoefficients. In publication [12], this feature of the NN-K-SVD method has beenimplemented to identify the behaviour of electricity consumers.Based on expression 2, the graphic way of storing information in individual matricesis shown in Figure 8. The green colour of letters describes the dimensions of individualmatrices. Yellow colour boxes and the green arrows show the process of reconstructing thesecond load profile located in the X matrix. This profile consists of two patterns - atoms,numbered 6 and 17 with the 18 element dictionary atoms D. The scaling factors frommatrix A are multiplied by the corresponding atom from the matrix D. Next, the scaledatoms are summed up by reconstructing the compressed load profile.

Fig. 8. Graphical representation of the expression 2.
Each reconstructed profile consists of several atoms which scaling coefficients areplaced in the matrix A. Forecasting the demand for the power of a given customer or area,you can analyze the shape of atoms from which the profile and the scaling coefficient of agiven atom are composed. The advantage of this method is the reduction of the amount ofstored data and quick access to archival information.The proposal to applying the results of the NN-K-SVD method in the prognostic systembased on artificial neural networks can be used for teaching and then predicting thematrixes A and D. An exemplary idea of such a system is presented in Figure 9.

Fig. 9. The idea of a prognostic system using artificial neural networks a) a classical approach,b) using atom numbers and scaling factors.
The input data to the forecasting system are the same in both cases. The output of thissystem is, in the case of the classical approach (a), load profile values, which can be as highas 1,440. In the proposed solution (b), the output of the forecasting system is several valuescorresponding to profile numbers and their scaling factors. Profit in the form of reducingthe number of physical outputs of the artificial neural network, translates into simplifying
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its construction (mainly reducing the number of neurons) will allow to increase the speed ofits operation, in particular, speed up the time-consuming and often repeated learningprocess. Appropriate preparation of the atom dictionary so that you can use one atom alongwith the scaling factor while maintaining an acceptable level of error, will significantlysimplify and accelerate the operation of the forecasting system.
4 Summary
The NN-K-SVD method in literature is mainly proposed for the compression of varioustypes of signals, including power load profiles. Its disadvantage is the complex and time-consuming process of compression, i.e. determining the matrix of atoms and scaling values.However, this method has more advantages than disadvantages. Its main advantage is theuncomplicated and fast reproduction of the signal. Interesting features of this method arealso the properties of the matrix of atoms and matrix coefficients. Appropriateinterpretation of atomic shapes along with the scaling values assigned to them can be usednot only for the purposes of profile reconstruction but also for the behaviour of electricityrecipients as well as in power demand forecasting systems, especially where a quickdecision or forecast is required.This work is an analysis of the applicability of this method in the forecasting systemand requires the development of a model of such a system and its practical verification,which is included in the plans for further research.
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