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Abstract. In this paper, the maximum power point tracking problem of variable-speed wind turbine 

systems is studied. The mechanical and electromagnetic dynamics of the wind turbine systems are both 

taken into account. Since the electromagnetic parts change much faster than the turbine part, the whole 

system is modeled in two time scales base on singular perturbation theory. And a T-S fuzzy model 

predictive control strategy is then developed. The controller is validated with a wind turbine simulator. The 

results have shown better performance in comparison with existing controllers. 

1 Introduction 

Wind energy is a clean and inexhaustible resource. 

Nowadays wind conversion control systems have 

attracted lots of researchers’ attention, especially about 

variable-speed turbines.  

Variable-speed wind turbines operate in two regimes, 

below-rated power and above rated power. Control 

objectives of wind conversion are different depending on 

the operating area. For low wind speed, the primary aim 

is to maximize the wind energy capture [1], [2]. Many 

research work are in the aim to optimize wind power 

capture [2]-[5]. This paper focuses on rotating the rotor 

speed at a reference proportional to the effective wind 

speed in order to reach the maximum wind energy 

capture. In other words, the maximum power point 

tracking problem is considered in this paper. 

Many control strategies, including linear and 

nonlinear controllers, were proposed in the existing 

literature. PID pitch controller is a classical approach for 

the rotor speed, which can be found in [6]. Another 

known method is an LQG controller [7], [8] These 

controllers resulted in acceptable results, but still 

insufficient. Then, intelligent control ideas are combined 

with the classical approaches. References [9], [10] 

present fuzzy PID controller to capture the maximum 

wind energy. And references [11] and [12] employ 

neural network and genetic algorithm respectively for 

maximum power extraction.  

As for the nonlinear control methods, Boukhezzar
[13]

 

dissociates the generator and aeroturbine control, designs 

a nonlinear cascaded control structure containing two 

control loops: the inner loop deals with the electric 

generator and the outer loop concerns the aeroturbine. In 

[14], a nonlinear model predictive controller is 

developed. The predictive calculation is based on the 

input-output feedback linearization scheme, and the 

control law is derived from optimization of an objective 

function.  

Although a considerable bibliography is devoted to 

the maximum power point tracking problem, most of 

them do not consider that the generator part varies much 

faster than the aeroturbine part. However, as a matter of 

fact, mechanical components are slower compared with 

electrical components. The whole wind turbine system is 

in two-time-scale. It is known that two time scale system 

usually are difficult to control. A slow controller is 

impossible to respond the fast states timely and 

appropriately. As for a fast controller, the variation of 

the slow states is nearly zero in a short time, and this will 

lead to data loss.  

Singular Perturbation (SP) theory is a "gift" to 

control these multiple scale systems [15], [16] with the 

remedial features of both dimensional reduction and 

stiffness relief. In this paper, the wind turbines’ 

mechanical and electrical components are both exploited, 

in a nonlinear singularly perturbed model. Then, the 

mathematical model is reformed into T-S fuzzy model. 

A T-S fuzzy model based predictive controller is 

proposed.  

The contribution of this paper is, on the one hand, the 

consideration of both mechanical and electrical 

components. Taken the wind rotor speed r , generator 

speed g  and internal torque HT  as the slow states, and 

q , d  components of the stator currents, di , qi  as the fast 

states, a singularly perturbed T-S fuzzy model is 

presented. With regards to the literature, this model takes 

advantage of the two-time-scale property of the wind 

turbine systems. 

On the other hand, the contribution consists of 

proposing a nonlinear Model Predictive Controller (MPC) 

composed of slow and fast MPC sub-controllers based 

on the T-S fuzzy model. The cost function is defined of 

tracking error ( )e t  (between the rotor speed r  and the 
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optimal rotor speed 
ref

r ) and the variation of the input, 

( )u t . By the optimization of the cost function, a sub-

controller is derived to maintain the rotor speed r  at the 

optimal rotor speed 
ref

r . In doing so, the wind energy 

capture is minimized. Similarly, the fast MPC sub-

controller could be designed. And the whole controller is 

composed of slow sub-controller and fast sub-controller. 

The remainder of this paper is organized as follows. 

The singularly perturbed T-S fuzzy model of the wind 

turbine systems is described in Section 2. Section 3 

designs a composite model predictive controller. In 

Section 4, the control strategy is validated upon the 

mathematical model using MATLAB. In the end, 

Section 5 discusses the conclusion of this work. 

For the reader convenience, the list of symbols is 

given in Table 1. 

Table 1. List of symbols. 

Symbols Meaning 

( )V t  Wind speed, 1m s  

( )r t  Rotor speed, 1rad s  

( )ref t  Optimal rotor speed, 1rad s  

( )g t  Generator speed, 1rad s  

HT  Internal torque, N m  

i  Gearbox ratio 

  Gearbox efficiency 

rJ  Wind rotor inertia, 2Kgm  

gJ  Generator inertia, 2Kgm  

gK  
High-speed shaft stiffness 

coefficient, 1Nmrad   

gB  
High-speed shaft damping 

coefficient, 2 1Kgm s  

P  Number of pole pairs 

m  Flux linkage, Wb  

di  d  components of the stator 

currents, A  

qi  q  components of the stator 

currents, A  

rT  Aerodynamic torque, N m  

sR  Stator resistance,   

dL  Stator d − axis inductance, 
mH  

qL  Stator q − axis inductance, 

mH  

du  Stator d − axis voltage, V  

qu  Stator q − axis voltage, V  

2 System Description and 
Decomposition 

2.1 Problem Description 
Consider a class of wind turbine systems developed as a 

nonlinear singularly perturbed model as below: 
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where 0.01  . Define 
T

d qz i i    , and rearrange 

equations (2) into the matrix form as below 
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So we get the system expressed as the singularly 

perturbed model: 

1 1 1

2 2 2

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

rx t A x t B z t C T

z t A z x t B z t C u t

  

  

   (4) 

Our objective is to rotate the wind rotor speed r  to 

track the optimal value ( )opt

r optV t  . Further more, the 

system will be presented in a fuzzy linear dynamic 

model called Takagi-Sugeno model. This fuzzy model is 

described by the IF-THEN rules, and the jth  rule is of 

the following form: 

Plant Rule j : IF ( )di t  is of 1jM  and ( )qi t  is of 2jM  

Then 
1 1 1

2 2 2

( ) ( ) ( )
, 1,2, .

( ) ( ) ( ) ( )

r

j

x t A x t B z t C T
j r
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
  


   

(5) 

where 1jM  and 2jM  are the fuzzy term-set, r  is the 

number of IF-THEN rules, and ( )di t  and ( )qi t  are the 

premise variables.  

Then, the overall singularly perturbed model is 

inferred as follows: 
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For all t , 
jh  is the grade of membership of ( )z t  in 

jlM . 

From the definition of ( ( ))jh z t , it is easy to be seen that  

1
( ( )) 1

, 1,2,
( ( )) 0

r

jj

j

h z t
j r

h z t


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


    (7) 

Remark 1: Since the 2 ( )A z  varies with time t  and the 

state z , it is difficult to get the unique solution of z  as 

( , , )s fz h t x u  for order reduction from equation (4). To 

make up for this drawback, we linearized the nonlinear 

model based on the different values of 2 ( )A z  while ( )z t  

changes. Namely, the fast state ( ) ( ) ( )d qz t i t i t     is the 

premise variable. 

Remark 2: By representation of the singularly perturbed 

nonlinear dynamic model of the wind turbine system, we 

have obtained a linear dynamic fuzzy model. For a linear 

model, much more practical linear control theories can 

be applied. In this paper, we adopt the Model Predictive 

Control (MPC) method. 

Remark 3: It can be noticed that in the equation (6), the 

coefficient matrices do not vary with the subscript j . 

That is,  1 1 1( ) ( ) rA x t B z t C T   part is independent of jh . 

Therefore, the equation (6) can be simplified into 

1 1 1( ) ( ) ( ) rx t A x t B z t C T   . However, to keep the uniform 

formats of the slow and fast subsystems, we prefer the 

equation (6) to be expressed of the fuzzy model. 

As we can see that the singular perturbation 

parameter   is caused because of the different time 

scales between the mechanical dynamic, namely the 

speed and torque, and the electric dynamic which are the 

varying electric current. With the small parameter   

multiplying the state z , it is difficult to apply common 

analysis and control theories to the SPS.  

In order to analyze and control the singular perturbed 

T-S model (6), the corresponding slow and fast 

subsystems are derived. 

2.2 Two-Time-Scale System Decoupling 
In this section, the system decoupling procedure is 

briefly described of equations (5)
[12,17]

. 

Define new variables as ,j jz L x x N       , then 

we can get 

1 1 1

2 2 2

0

0

j j j

j j j

F G H
T u
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 



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  (8) 

where 1 1 1j jF A B L  , 2 2 1j jF B L B  , 

1 1 1j j jG C N L C  , 2 1j jG L C , 1 2j jH N C  , 2 2jH C . 

jL  and jN  satisfy  

2 2 1 1( ) 0j j jA B L L A B L      (9) 

2 1 1 1 1 0j j j j jN B B N L B A B L N             (10) 

First, the jth  plant rule of fuzzy slow subsystem is 

expressed as below: 

Plant Rule j : 

IF ( )di t  is of 1jM  and ( )qi t  is of 2jM  

THEN 

1 1 1( ) ( ) ( )j j s j rt F t H u t G T       (11) 

where 1

01 1 1 2 2j jA A B B A  , and 1

01 1 2 2B B B C . 

Second, the jth  plant rule of fuzzy fast subsystem is 

expressed as below 

Plant Rule j : 

IF ( )di t  is of 1jM  and ( )qi t  is of 2jM  

THEN  

20 20( ) ( )f f fz t B z t C u     (12) 

where 1

20 1 2B B B . 
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Define 
t




 , and substitute it into the fast subsystem, 

then we can obtain 

2 2
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dz
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
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Then the overall slow and fast subsystems of the normal 

SPF system are inferred as 
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Remark 4: In order to simplify the model, we take the 

inputs, including 01 ( )sB u t  and 1 rC T , of the (14a) as a 

generalized input su , that is to say, 01 1( )s s ru B u t C T  . 

The following system is then derived: 

 01

1
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r

s i s s

i

x t h A x t u t


     (15a) 

2 2

( )
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B z C u

d
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 


     (15b) 

3. Controller Design 

Now the wind turbine system is modeled as a singularly 

perturbed T-S fuzzy system. In fact, the model is 

composed of r  linearized subsystems. Based on the 

singularly perturbed T-S fuzzy model, the outputs could 

be predicted in time horizon T . In order to minimize the 

error ( )e t  between the predicted outputs and the 

reference, a cost function of ( )e t  is defined. Besides, 

variation of the input, ( )u t , will lead to overmuch 

transient load. Therefore, ( )u t  is also taken into the cost 

function. By minimization of the cost function, a 

sequence of future control inputs is derived. However, 

only the first input in the optimal sequence is sent into 

the plant, and the entire calculation is repeated at 

subsequent control intervals. The whole model 

predictive control strategy is presented in Fig. 1. 

 

 

 

 

 

 

 

 

 

 

Fig. 1. SP T-S Fuzzy Model Predictive Control Structure. 

Taking the slow subsystem for example, the model 

predictive control method[18] is presented. The jth  slow 

subsystem is given as follows: 
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where T  is the prediction horizon,  s iX t   is the state 

of augmented model as below: 
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Remark 5: Since the wind speed is a continuous 

variable, it is reasonable to assume that ( )V t  is derivable. 

Then, it is obvious to know that ( ) ( )
opt

ref t V t
R


   is 

derivable, which means ( )ref t  exists.  

The variation of the input, ( )ju t , will lead to overmuch 

transient load and cost energy. As a consequence, instead 

of modeling the control signal, the continuous-time 

predictive control design will target the derivative of the 

control signal,  sju t , which will satisfy the property 

 
0

sju t dt


 
   (20) 

A set of Laguerre functions  L   is used as orthonormal 

basis functions[18]. According to [18], the derivative of 

the control signal can be described as: 
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1

'
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where  1 2 'Nc c c   is the vector of coefficients 

as below:  
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and the minimum of the cost function minsJ  is: 

 
' 1

min
0

' ' ( )sj s
T A A

s s i s s iJ X t e Q e d X t
       

    (26) 

So feedback gain matrix msK  is as below: 
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(27) 

Therefore, ( ) ( )sj ms su t K X t  , and 
1

( ) ( )
r

s sj

j

u t u t


 . 

Similarly, we can get ( )fu t  using MPC for the fast 

subsystem. Then composite input ( )u t  for the original 

system is obtained: 

( ) ( ) ( )s fu t u t u t     (28) 

4 Example 

In this section, the parameters of the CART 3 located at 

the NREL are utilized to validate the control method 

proposed. The CART 3 parameters are summarized in 

Table 2. 

The control objective is to optimize the wind power 

capture. Therefore, the tip speed ration should be fixed 

to its optimal value by maintaining the rotor speed r  at 

the optimal rotor speed 
( )ref

r opt

V t

R
  . 

Table 2. Wind Energy Conversion System Parameter 

Tip speed ratio opt  5.8  

Blade rotor R  21.65m  

Air density   30.98Kgm  

Gearbox ratio i  43.165  
Wind rotor inertia rJ  23.88Kgm  

Generator inertia 
gJ  20.22Kgm  

Stator d − axis inductance dL  41.56mH  

Stator q − axis inductance qL  41.56mH  

4.1 Constant Tracking Example 
The first example is to track a step signal as seen in Fig 2. 

The red solid line is the reference. The T-S MPC 

controlled results in blue are compared with the ones 

controlled by Nonlinear Feedback Linearization (NFL) 

method. Tracking errors are presented in Fig 3. It shows 

that rotor speed r  can reach the optimal value faster 

controlled by T-S MPC than that controlled by NFL 

controller. 

 

Fig 2: Constant Tracking  

4.2 Turbulence Tracking Example 

The T-S MPC controller is tested to track the wind 

turbulence. And the controlled results are shown in Fig 4. 

It can be seen that the rotor speed controlled by the T-S 

MPC can track the desired rotor speed much better than 

that of the NFL method. 

 

Fig 3: Constant Tracking Error 

 
Fig 4: Wind Turbulence Tracking Results by T-S MPC 

and NFL 
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The controllers performances are compared in Table 3 

using the aerodynamic efficiency aero . It is defined as  

  0

0

%

f

f

t

a
t

aero t

a opt
t

P dt

P dt
 





 

where 
2 31

2
aopt PoptP R C v  is the optimal aerodynamic 

power corresponding to the wind speed. Apparently, the 

method proposed in this paper improved the 

aerodynamic efficiency compared with the NFL method. 

Table 3. Comparison of different controllers. 

 (%)aero  

NLF 89.46 

T-S MPC 92.55 

5 Conclusion 

In this paper, a singularly perturbed T-S model is 

proposed of wind energy conversion systems. The 

maximum point tracking problem is studied, and a T-S 

MPC method is developed. In the end, two numerical 

examples are carried out the compare the control strategy 

proposed with the nonlinear feedback linearization 

method. The results show that the T-S MPC brings better 

performance.  
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