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Abstract. Modeling of multiphase systems, which includes suspensions, is 

an issue that is continually developed. There are no procedures at the 

moment that would clearly determine the way in which suspension is defined 

in numerical simulations. The article presents an analysis of the selection of 

a numerical model and the definition of the suspension with a polydisperse 

particle composition.  

1 Introduction 

The concept of a multiphase system is very extensive, and shall include both suspensions, 

i.e., systems comprising a dispersed suspension phase and systems including a liquid in 

various states of aggregation (e.g. water/steam systems). A system of two not mixed liquids 

should be regarded as a multiphase (two-phase) too, where a clear boundary allows one to 

determine the boundary (e.g. air/water systems) [1].  

A range of studies on modeling of multiphase systems [2-4] have appeared over the last 

decade, including studies on the use of numerical methods in the design of slurry settling 

devices [5].  

The largest group consists of models created based on the finite volume method [6] or the 

method of finite elements [7]. The models that can be divided into two classes: Euler-Lagrang 

and Euler-Euler. Models belonging to the Euler-Lagrangian Particle Tracking (Discrete 

Phase Model) class allow the modeling of multi-phase systems with a dispersion phase in 

a granular form, assuming a low concentration (free sedimentation). 

These models are characterized in that in the continuous phase of the liquid, analyzed by 

the Euler method, the movement of each grain of the disperse phase is calculated using the 

Lagrangian method. As a result, each grain is individually modeled – this allows one to 

conduct numerical simulations of suspension where the dispersion phase can have any 

composition of the particle sizes. This way of defining a multiphase system has a significant 

limitation resulting from the number of grains of the dispersion phase that we can model. In 

practice, the dispersion is limited to a few or tens of thousands of grains. Therefore, models 

of this class will be dedicated to calculations such as the spread of pollutants or tracking 

particle traces and their propagation rather than modeling of systems in which the 

concentration of the dispersion phase plays an important role. 
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Among the models belonging to the second group (Euler-Euler models), the VOF, 

Mixture and Eulerian models should be distinguished. In these models, each phase (phase 

dispersed and continuous) treated as a continuous means described using Euler method. In 

the calculation area, each of the phases is represented by its volume fraction. Depending on 

the model, the interactions between the phases are considered differently. Therefore, each 

model is dedicated to a different group of multi-phase systems or allows to analyze the system 

in other respects. 

In high concentrations, where in one cubic centimeter there can be up to several millions 

of grains, Euler-Euler class models are used, where the continuous and dispersion phases can 

be treated as continuous phase with varying degrees of participation by volume. 

2 The choice of the computational model 

By setting out to model a multiphase system, one must assume a fundamental element to 

determine which class numerical model will be the most suitable one to carry out simulations 

of interest. As has been mentioned, the currently available models belong to two classes: 

Euler-Lagrange and Euler-Euler. In the case of numeric methods for modeling the work of 

a settling device, the basic criterion of choice of the model class will be the share of the 

dispersion phase.  

The analysis of the selection of the model class in a multiphase system was performed for 

a sample industrial suspension. In the analysis, a suspension of carbon from a coal enrichment 

plant after stripping coal processing was used. The share of the disperse phase for its initial 

concentration s0 = 45 kg/m3 and the density of solid part ρd = 2299 kg/m3 was, according to 

equation (1), φd = 0.0195. As the volume of the dispersion fraction is almost 2%, one can 

classify the sedimentation process which will occur in the suspension as a process of hindered 

sedimentation [8]. φ =  sρ (1) 

An additional criterion that can be used here to calculate the average distance between 

particles of the disperse phase, which one can determine from the load of suspended particles 

and density ratio in the phases. The grain load of the suspension is determined from the 

relationship (2) and is β = 0.0459 . 

 =  φ ∙ ρφ ∙ ρ  (2) 

where : 

d – index of the disperse phase, 

c –  index of the continuous phase. 

The ratio of the density of the disperse phase and the continuous phase shall be 

γ = 2.299(3). γ =  ρρ  (3) 

Taking into account the above ratios (2) and (3) one can determine the average distance 

between particles in suspension from the equation:  

Ld =  π6 1 + γ
γ 


 (4) 

In the case considered, from the equation (4), we obtain: L/dd = 2.99. 

If the average distance between the particles is greater than 8 then there is confidence that 

each grain falls freely, independently of the other grains, and the Lagrangian DPM (Discrete 

Phase Model) model can be deemed appropriate to describe the motion of the grains. 

However, in the system where the average distance between particles is less than 8, one 

should consider one of the VOF (Volume of Fluid), Mixture or Eulerian models. Since the 

VOF model allows modeling multiphase systems where both the continuous phase and the 

dispersion phases are liquid, it cannot be used for modeling the sedimentation of coal slurry. 

The Stokes number is a criterion for the use of a Mixture or Eulerian model. It is defined 

as the product of the reaction time for the particle and the system, where the response time 

of the particles is calculated from the relationship: τ =  ρ ∙ d18 ∙ μ (5) 

From the equation (5) for grain dd = 7.89 μm we obtain: τd = 8 * 10-6 s, where dd is the 

diameter of the boundary grain.  

The response time of the ts system is calculated based on the dominant flow rate and the 

dimension of the characteristic Ls system (usually the way from input to output) according to 

equation:  t =  Lv (6) 

Ultimately, the Stokes number will be calculated according to (7). S =  τt  (7) 

The limit value of the Stokes number is 1. For S<<t we can use any model of a multiphase 

system, and for the St above 1, we shall use the DPM or Eulerian model. 

In the case of modeling static sedimentation, a system without flow is analyzed, therefore, 

the dominant component will be the movement of particles of the disperse phase, thus making 

the Eulerian a more appropriate model to describe the process of static sedimentation. Due 

to the volume fraction of the disperse phase, the DPM model cannot be used. 

In the case of modeling the operation of a settler, where flow occurs, the Stokes number 

will depend on the zone of sedimentation for which it will be calculated. In the refining zone 

the flow rate is normally greater than the rate of sedimentation, thus the Stokes number will 

have a value less than 1. In turn, in the layer of sludge, flow rate will tend to zero, which in 

turn will result in a Stokes number greater than 1. As a result, one can draw a conclusion that 

the most appropriate model for use in numerical simulations of a settler operation will be 

an Eulerian model. 

3 Numerical model of a multiphase system  

The Eulerian model, used to model multi-phase systems, allow the implementation of the 

simulation in which there is one main phase (solid) and at least one disperse phase. In this 

model, there is no limit to the number of dispersion phases beyond the limits of hardware 

consisting in the availability of memory and computing power. The Eulerian model, among 

all models of multiphase systems, is the one with the greatest demand for computing power 

and RAM. However, it is a model that offers the widest possibilities when calculating the 

interaction between the phases. 

A characteristic feature of this model is that for each phase, a continuity equation and 

a momentum equation are solved. In this model, it is assumed that the pressure at any point 

is the same for all phases. Other sizes are calculated individually for each phase. In this 
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classify the sedimentation process which will occur in the suspension as a process of hindered 
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An additional criterion that can be used here to calculate the average distance between 
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If the average distance between the particles is greater than 8 then there is confidence that 

each grain falls freely, independently of the other grains, and the Lagrangian DPM (Discrete 

Phase Model) model can be deemed appropriate to describe the motion of the grains. 

However, in the system where the average distance between particles is less than 8, one 

should consider one of the VOF (Volume of Fluid), Mixture or Eulerian models. Since the 

VOF model allows modeling multiphase systems where both the continuous phase and the 
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The Stokes number is a criterion for the use of a Mixture or Eulerian model. It is defined 

as the product of the reaction time for the particle and the system, where the response time 

of the particles is calculated from the relationship: τ =  ρ ∙ d18 ∙ μ (5) 

From the equation (5) for grain dd = 7.89 μm we obtain: τd = 8 * 10-6 s, where dd is the 
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The response time of the ts system is calculated based on the dominant flow rate and the 

dimension of the characteristic Ls system (usually the way from input to output) according to 
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The limit value of the Stokes number is 1. For S<<t we can use any model of a multiphase 

system, and for the St above 1, we shall use the DPM or Eulerian model. 

In the case of modeling static sedimentation, a system without flow is analyzed, therefore, 

the dominant component will be the movement of particles of the disperse phase, thus making 

the Eulerian a more appropriate model to describe the process of static sedimentation. Due 

to the volume fraction of the disperse phase, the DPM model cannot be used. 

In the case of modeling the operation of a settler, where flow occurs, the Stokes number 

will depend on the zone of sedimentation for which it will be calculated. In the refining zone 

the flow rate is normally greater than the rate of sedimentation, thus the Stokes number will 

have a value less than 1. In turn, in the layer of sludge, flow rate will tend to zero, which in 

turn will result in a Stokes number greater than 1. As a result, one can draw a conclusion that 

the most appropriate model for use in numerical simulations of a settler operation will be 

an Eulerian model. 
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The Eulerian model, used to model multi-phase systems, allow the implementation of the 

simulation in which there is one main phase (solid) and at least one disperse phase. In this 

model, there is no limit to the number of dispersion phases beyond the limits of hardware 

consisting in the availability of memory and computing power. The Eulerian model, among 

all models of multiphase systems, is the one with the greatest demand for computing power 

and RAM. However, it is a model that offers the widest possibilities when calculating the 

interaction between the phases. 

A characteristic feature of this model is that for each phase, a continuity equation and 

a momentum equation are solved. In this model, it is assumed that the pressure at any point 

is the same for all phases. Other sizes are calculated individually for each phase. In this 
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model, it is possible to take account of various types of inter-phase interactions as well as 

calculation of flow by one of the turbulence models for the various phases. 

Phases of the Eulerian model are treated as interpenetrating continua, representing 

a multiphase system, in which each phase has its share of the volume described as ϕq, where 

the total volume of shares of the various phases in the whole system is 1. 

As a result, in Euler-Euler class models, a system of equations is solved to describe the 

flow. In numerical calculations, the same material with different physical properties, e.g. the 

diameter of grains [9] should also be considered a separate phase. Due to the fact that the 

disperse fraction in this model may be composed of grains of a specified diameter, it is 

possible to obtain multiple system by building several dispersion phases with varying grain 

composition. However, this results in multiplication of the number of equations that must be 

solved for such a system. The main advantage of this model is that it can be used in the full 

range of shares by volume of each phase [3]. 

In Eulerian class models, the balance of the q phase for a multiphase mixture [3] is 

described by the equation (8). ∂∂t φρ + ∇φρv⃗  = m  − m 
 + S (8) 

where :  – volume share of phase q, ⃗ –  velocity of phase q,  – density of phase q,   – mass flow between p and q phases = 1, 2, 3, ..., n,    –  additional (external) source of mass for phase q, variable or constant. 

When the sum of the volume of the individual phases of 1 (9)is maintained. φ
 = 1 (9) 

The equation of the velocity balance for the q phase mixture in an Eulerian model is 

described by the vector equation: ∂∂t φρv⃗  + ∇φρv⃗ v⃗ 
= −φ∇p + ∇ ∙ τ⃗  + rρg⃗ +R⃗  + m v⃗  − m v⃗ 

+ F⃗  + F⃗ , + F⃗ , 
(10) 

where : p – pressure, τ⃗  –  phase q stress tensor, g⃗  – acceleration of gravity, R⃗  – inter-phase interactions resulting from the presence of other phases, 

dependent on the friction, pressure, cohesive interactions etc., v⃗  –  inter-phase velocity, F⃗  – external mass forces acting on the phase q, F⃗ , –  lift acting on the phase q, F⃗ , – force associated with the apparent weight of phase q, m  – flow of mass from phase p to phase q, m  –  flow of the phase q to phase p, n – total number of phases of the system. 

In the calculation of a multiphase system for each phase, a set of equations set forth above 

is solved. In the case of computation for the range of a turbulence model, the equations are 

supplemented with the equations describing the turbulence. In effect, the modeling of 

a multiphase system using several dispersion phases results in a very high demand for 

computing power and a very long calculation times. 

The continuity equation for one fraction, assuming no mass transfer between the phases 

and a lack of sources of weight will be described by the equation (11). ∂∂t φρ + ∇φρv⃗  = 0 (11) 

The sum of the volume shares of each volume fraction φq must equal 1 according to 

equation (10). 

In addition, for incompressible fluids, the continuity equation (11) will have the form:   ∇φv⃗  = 0 (12) 

The equation for fluid is described by the dependency (13). ∂∂t φρv⃗  + ∇φρv⃗ v⃗ 
= −φ∇p + ∇ ∙ τ⃗  + φρg⃗ + R⃗ 

+ F⃗  + F⃗ , + F⃗ , 

(13) 

The forces acting on the phase of the q, as a result of the presence of other phases, are 

described by the equation (14). R⃗  = cv⃗  − v⃗  (14) 

The rate c is described by the formula (15). c = C8 Aρv⃗  − v⃗  (15) 

where the resistance coefficient CD will depend on the Reynolds number calculated from 

one of the equations (16) or (17):  C =  for Re<<1 (16) C = 0,44 for 1000 ≤ Re ≤ 1÷2 x 105 (17) 

For Reynolds numbers in the range 0.1 < Re < 1000, it can be designated using one of the 

models: 

The Schiller Naumann Drag Model (18) [10] – dedicated for calculations of multiphase 

systems with a low share dispersion phase. C = 24Re 1 + 0,15 Re, (18) 

Wen Yu Drag Model (19) [11]. C = φ,max  24Re 1 + 0,15Re,;  0,44 Re = φRe 

(19) 

where : φ  – volume of the continuous phase. 
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where :  – volume share of phase q, ⃗ –  velocity of phase q,  – density of phase q,   – mass flow between p and q phases = 1, 2, 3, ..., n,    –  additional (external) source of mass for phase q, variable or constant. 

When the sum of the volume of the individual phases of 1 (9)is maintained. φ
 = 1 (9) 

The equation of the velocity balance for the q phase mixture in an Eulerian model is 
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where : p – pressure, τ⃗  –  phase q stress tensor, g⃗  – acceleration of gravity, R⃗  – inter-phase interactions resulting from the presence of other phases, 
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In the calculation of a multiphase system for each phase, a set of equations set forth above 

is solved. In the case of computation for the range of a turbulence model, the equations are 

supplemented with the equations describing the turbulence. In effect, the modeling of 

a multiphase system using several dispersion phases results in a very high demand for 

computing power and a very long calculation times. 

The continuity equation for one fraction, assuming no mass transfer between the phases 

and a lack of sources of weight will be described by the equation (11). ∂∂t φρ + ∇φρv⃗  = 0 (11) 

The sum of the volume shares of each volume fraction φq must equal 1 according to 
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In addition, for incompressible fluids, the continuity equation (11) will have the form:   ∇φv⃗  = 0 (12) 

The equation for fluid is described by the dependency (13). ∂∂t φρv⃗  + ∇φρv⃗ v⃗ 
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(13) 

The forces acting on the phase of the q, as a result of the presence of other phases, are 

described by the equation (14). R⃗  = cv⃗  − v⃗  (14) 

The rate c is described by the formula (15). c = C8 Aρv⃗  − v⃗  (15) 
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one of the equations (16) or (17):  C =  for Re<<1 (16) C = 0,44 for 1000 ≤ Re ≤ 1÷2 x 105 (17) 

For Reynolds numbers in the range 0.1 < Re < 1000, it can be designated using one of the 
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The Schiller Naumann Drag Model (18) [10] – dedicated for calculations of multiphase 
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where : φ  – volume of the continuous phase. 
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Gidaspow Drag Model (20)[12]. C = CWen Yu, φ > 0,8 

c = 150 1 − φμφd + 74 1 − φρ|v⃗  − v⃗ |d ; φ < 0,8 
(20) 

4 Definition of the numerical model of a grain composition of the 
polydisperse suspension 

In real life systems, except in individual cases, suspensions with polydisperse grain 

composition occur [13]. An example of a grain composition described by a particle size 

distribution curve is presented in Figure 1. The use of particle size distribution described 

using a graph in numerical calculations would be very cumbersome, since in practice the 

grain composition is described using a random variable. The distribution of particle sizes 

most commonly used here is the log normal parameter distribution with two parameters: m 

and sigma. In numerical simulations of the process of sedimentation, a fully polydisperse size 

distribution can be defined only in Euler-Lagrangian class models, i.e., in the case of free 

sedimentation with low concentration slurries.  

 
Fig. 1. Example particle size distribution of a suspension 

In sedimentary systems, where Euler-Euler class models are used, the dispersion fraction 

is defined as a separate phase or a set of phases, each with a defined volume share and 

a defined particle size. Tests modeling the sedimentation using a monodisperse particle size 

distribution fraction have not provided satisfactory results. The studies and analyses carried 

out so far [14] indicate that defining a dispersion fraction based on a particle size distribution 

described by a histogram comprising several grain classes is the solution that gives promising 

results. An example of a particle size distribution in a slurry described by grain sizes is 

presented in table 1.  
Table 1. An example of grain composition described using grain classes 

Grain class 

µm 

Representative 

grain diameter 

µm 

Share 

% 

0÷2 1.0 17.9 

2÷5 3.5 20.1 

5÷12 8.5 23.0 

12÷30 21.0 20.4 

>30 60.0 18.6 

Based on the analysis carried out [14], it should be noted that in numerical simulations of 

the polydispersity dispersion, the use of the monodisperse numerical suspension model with 

substitution parameters does not produce positive results, therefore it is necessary to use 

multiphase systems in numerical simulations. The presented method of defining a multiphase 

system based on the grain composition of the suspension allows obtaining near-laboratory 

results of sedimentation in numerical simulations, with a change in the concentration of the 

suspension at the overflow and outflow, including the change in grain composition at the 

overflow and outflow. 

5 Conclusion  

The analysis shows that taking into consideration the purpose of conducting numerical 

simulations of sedimentation, i.e., to obtain a concentration distribution in a settler, numerical 

simulations of settling device operation should use Euler-Euler class models. These models 

allow you to obtain information on the volume share of the individual fractions (the main and 

dispersion fraction), which is, in effect, the distribution of the concentrations of the 

suspension in the device. As a result of the analysis, it should be noted that the most 

appropriate model for numerical simulation of sedimentation will be the Eulerian model. At 

the same time, it should be noted that there is a necessity of further work to determine the 

number of grain fractions sufficient to conduct reliable simulations, burdened an error of no 

more than a few percent. 
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