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Abstract. The stochastic finite element method (SFEM) is an extension of 
classical FEM which allows the representation of various types and sources 
of uncertainty in one computational system. This review paper presents 
information regarding SFEM implementation in the assessment of bridge 
objects. A concise theoretical background of the three most commonly used 
branches of SFEM is also presented. This technique is used in the assessment 
of bridge structures  with regards to, e.g. load in motion problems, wind and 
seismic excitation analysis, random material property analysis, reliability 
and fatigue reliability analysis. However, it seems that the main feasibility 
concern is the lack of proper SFEM implementation into general purpose 
FEM systems which are used by bridge engineers. This is why, arguably, 
one of the most effective ways to introduce SFEM in real-life bridge 
engineering problems is with the methods that rely on multiple calculations 
of classical deterministic FEM e.g. Monte Carlo Simulation, or Response 
Function Method. To introduce randomness directly into individual finite 
elements of the model in a complete SFEM procedure it is usually necessary 
to develop proprietary computer programs. 

1 Introduction  
Bridge objects are key components of road infrastructure systems. Any serviceability failures 
of these structures often result in extremely costly renovation programs and troublesome 
hindrances to traffic flow. This consequences can seriously affect the transportation system 
efficiency of major cites especially when a failure concerns bridges in the city bypass or other 
fundamental communication routes. 

To minimize the probability of the occurrence of these problems, special attention should 
be paid to the design stage of new bridges and thorough the assessment of existing ones prior 
to, e.g. renovation to increase their load capacity. Design costs are a very small fraction of 
the overall structures life cycle costs [1]. Thus, it is worthwhile investing time and measures 
for deep and reliable design or assessment analyses. For that purpose, in recent decades, 
probabilistic tools are more and more confidently implemented. Thanks to this, it is possible 
to properly represent important uncertainties in the analysis such us: random material 
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properties, random loads and dynamic excitations, random executive imperfections and 
others. 

An important branch of these methods is the Stochastic Finite Element Method 
(SFEM) [2, 3] which is an extension of its deterministic ancestor FEM. Depending on the 
technique of uncertainty propagation representation, it is developed in several variants, 
mainly: (I) FEM with Stochastic Perturbation Method (hereinafter referred to as Perturbation 
SFEM) [4], (II) Spectral Stochastic Finite Element Method (SSFEM) [5], (III) FEM with 
Monte Carlo Simulation (MCS) Technique often with a supplement of Latin Hypercube 
Sampling (LHS) or other sampling techniques [6]. These methods have recently been 
implemented in the analysis of various types of bridge superstructures and in the aspect of 
different types of analysis (modal, fatigue, static, reliability, etc.) 

Therefore, the main objective of this paper is to collect and analyse information regarding: 
(I) a concise outline of theoretical background of individual SFEM techniques, (II) a review 
of analyses and their types in which SFEM was effectively implemented for the assessment 
of bridge structures response, (III) the identification of the aspects in which SFEM requires 
further research and development or is currently infeasible in real-life engineering problems. 

2 Theoretical background 

2.1 Random finite element method with perturbation approach 

In the perturbation method, Taylor series expansion is used to formulate relationships 
between chosen characteristics of a random response and random structural parameters. 
Instability of the approximate solution appears in higher order terms [5]. One of the first 
applications of the perturbation approach for engineering problems can be found, for 
example, in [7]. In [8] and [9] this approach was further developed to be compatible with 
FEM. The second-order version of the stochastic finite element method was practically 
implemented in the aspect of structural analysis by Kleiber and Hien [4].  

Using this approach to, for example, introduce random material properties into the system 
will result in the following form of the stiffness matrix [2]: 

  =  + ∑  ∝ + 
∑ ∑  ∝∝ + ⋯ (1) 

where: :  ( = 1, 2, … , ) are zero mean random variables representing system uncertainties 
after random field discretisation; and  is a matrix containing expected values.  and  
can be derived as follows: 

  = 
∝ |∝ (2) 

  = 
∝∝ |∝ (3) 

Analogical considerations can be made in the case of the uncertainty in loads: 

  =  + ∑  ∝ + 
 ∑ ∑  ∝∝+ ⋯  (4) 

and displacements: 

  =  + ∑  ∝ + 
∑ ∑  ∝∝+ ⋯  (5) 
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The displacement vector  can also be calculated using an iterative scheme [3]: 

  = , (6a) 

  = ( − ), (6b) 

  = ( −  −  − ), (6c) 

where:  is equal to deterministic nodal displacements,  ,  are the first and second-
order perturbation of the displacement vector, respectively. 

In the case of the assumption that random variables ,  are Gaussian, the approximation 
of the response variability can be adopted as follows: 

 () ≈  + 
 ∑ ∑ [∝ , ∝]  (7) 

 [, ] ≈ ∑ ∑ ()[∝ , ∝]  (8) 

where: () and [, ] are the approximations of the expected values and covariance 
matrices of the random response (displacement), respectively. 

The main drawback of second-order calculations is that it can only reliably represent 
phenomena with relatively low variability (coefficient of variation < 15%). In other cases 
higher order approximations must be used. This led to development of the recursive 
stochastic finite element method [10] and the generalized perturbation method with the 
response function method which are presented in [11]. The latter was done with the use of 
the advanced symbolic Maple® system, and was supported by several numerical examples. 

2.2 Spectral Stochastic Finite Element Method (SSFEM) 

The Spectral Stochastic Finite Element Method (SSFEM) was introduced by Ghanem and 
Spanos [5]. SSFEM is a development of the deterministic FEM to accommodate random 
functions. One of the main goals of this method is to represent random material properties in 
a more computationally efficient manner than Monte-Carlo simulation. In [5] a random, 
special variation of material properties in a structure as described by a Gaussian stochastic 
field which is generated using Karhunen-Loève (K-L) expansion (presented in e.g. [3], 
initially derived in [12, 13, 14]): 

 (, ) = (̅) + ∑ [()() ] (9) 

where: (̅) is the mean of random field/process, () is a group of uncorrelated random 
variables,  and () are eigenvalues and eigenfunctions of the covariance kernel, 
respectively. 

On this basis, local (element) stiffness matrices in SSFEM are in the following form [3]: 

 ( ) =  + ∑ ()  (10) 

where:  is mean value of ( ) and  is given by: 

  =   ()Ω  (11) 

where:  is the mean value of the constitutive matrix, while  is the strain–displacement 
matrix. 
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After aggregation of local stiffness matrices into a global form (using rectangular 
permutation matrices known from classical FEM), and with the assumption that loading is 
deterministic, the equilibrium equation is as follows: 

 [ + ∑ ()]( ) =  (12) 

Alas, the covariance function of solution () (which is the random vector of nodal 
displacements) and corresponding eigenfunctions are unknown. Therefore, unlike in 
perturbation FEM, SSFEM requires using a second type of extension to express the response 
process (e.g. displacement). In [5] improved Neumann Expansion or/and Homogenous Chaos 
Expansions are used and compared. In the case of the latter one, the appropriate expression 
is as follows: 

 U() = Γ + ∑  Γ(())+ ∑ ∑   Γ((), ())+… (13) 

where: Γ(), … , () is the -th order polynomial chaos of the variables (), … , (). The above is often re-written into an alternative form by limiting series 
to  terms and mapping functional Γ(. ) into Ψ(. ) and coefficients  into  in one-to-one 
manner: 

 () = ∑ Ψ()  (14) 

On the basis of eq. 10 to eq. 14, the final equilibrium equation is constructed and solved 
as a linear system of algebraic equations, which, in turn, is obtained by a search of the optimal 
approximation of the exact solution () [3]. For further details on constructing polynomial 
chaos and mapping eq. 13 to eq. 14, the reader is advised to refer to the original text book [5] 
where several examples are presented. 

2.3 Monte Carlo Simulation 

The third, most straightforward approach to SFEM is a merger of the Monte Carlo Simulation 
(MCS) with deterministic FEM. It is done with the following steps [2, 15]: 

- adoption / recognition of sources of uncertainty, 
- selection of random variables, analysis of their distributions and correlation, 
- adequate generation of a set of random fields, 
- construction of  deterministic FEM model variants in accordance with the 

generated fields ( – number of model variants, number of simulations), 
- calculation of model responses in  cases, 
- statistical analysis of responses. 

The last step is done with the use of formulas known from statistics. For example, the 
estimators of mean  and standard deviation  of the analysed response (e.g. displacement ) in an i-th degree of freedom of FEM model are [3, 6]: 

  = 
 ∑ ()  (15) 

  = ∑ [(()) ∙()]
  (16) 

The accuracy of these estimations increases with an increasing number of simulations . 
On the other hand, large  can lead to computational issues (especially for complex 
numerical models). For that reason, a number of sampling techniques, e.g. Latin Hyper Cube 
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Sampling (LHS) and Improved LHS, were developed. Their use may lead to the reduction of  while maintaining an acceptable level of procedure’s accuracy. 

2.4 Other probabilistic methods for analysis of FE model multiple responses 

Not only the Monte Carlo Simulation is based on the multiple analyses of the deterministic 
FE model. A generalized variation of SFEM introduced by Kamiński [11] in a form of the 
Response Function Method (RFM) is one of them. Using such an approach, several real-life 
engineering structures were successfully analysed, e.g. [16, 17]. 

In this context, two other important methods should be mentioned here: Response Surface 
Method (RSM) [18] and Point Estimate Method (PEM) [19, 20]. Both rely on the 
approximation of the model's response and are widely used in civil engineering problems. 
However, it should be empasiszed that these techniques are not classified as SFEM methods 
in [2] and [3]. 

3 SFEM applications in bridge analysis  

The results of the author’s extensive review of the works regarding SFEM applications in the 
assessment of bridges are collected in Table 1. As demonstrated, the cited works contain 
bridge analysis issues related to, e. g.: bridge–vehicle interaction and weight in motion 
problems, dynamic response of pedestrian bridges, probabilistic seismic analysis, reliability 
and fatigue reliability issues, influence of wind excitations, and local failure of bridge 
components. 

Table 1. Application of probabilistic FE methods in analysis of bridge structures. 

method(s) used object / element aspect of analysis ref. 

Perturbation SFEM cable-stayed bridge prob. assessment of displacements and 
internal forces (random mat. properties) [21] 

Perturbation SFEM three-span, box 
girder bridge 

stochastic seismic analysis (random material 
properties) [22] 

Perturbation SFEM 
(RFM) 

arch, pedestrian 
bridge 

eigenfrequencies, displacements (uncertain 
dynamic load / deck stiffness / material 

properties) 
[16] 

SSFEM single-span beam, 
road bridge 

bridge–vehicle interaction (uncertain material 
parameters) [23] 

SSFEM single-span beam, 
road bridge 

bridge–vehicle interaction (uncertain dynamic 
loads, material density, elastic modulus, 

damping) 
[24] 

(K-L) expansion 
SFEM + MCS 

single-span, 
laminated 

composite beam 

bridge–vehicle interaction (randomness in 
material properties and moving loads) [25] 

(K-L) expansion 
SFEM 

single-span beam, 
road bridge 

bridge–vehicle interaction; moving force 
identification (random excitation and material 

properties) 
[26] 

FEM+MCS cable of suspension 
bridge 

probability distribution of cable failure 
(uncert. cable strength as 3D rand. field) [27] 

FEM+MCS (LHS) 
steel, road bridge 
(single-span, two 

girders) 

fatigue reliability assessment (uncertain 
vehicle loads in several aspects) [28] 
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FEM+MCS (LHS) three-span, 
suspension bridge 

damping and flutter speed (structural and 
aerodynamic uncertainties) [29] 

FEM+MCS 
three-span, 

suspension bridge 
(as in [29]) 

seismic analysis (uncertainties in seismic 
excitation) [30] 

FEM+MCS 
RSM 

two PC box girders, 
four-span, road 

bridge 

FE model validation  (uncertain material 
properties, stiffness of support bearings and 

expansion joints, stiffness between two 
adjacent box-girders) 

[31] 
[32] 

FEM+MCS 
RSM masonry arch bridge 

stochastic response, namely stresses and 
displacements (random ground motion, 

uncertain material properties) 
[33] 

FEM+MCS 
RSM 

large-span 
suspension bridge 

Probabilistic free vibration and flutter analysis 
(uncertain material properties and stiffness) [34] 

FEM+ improved  
RSM 

(not SFEM) 

large-span 
suspension bridge 

risk assessment for the construction phases 
(random cross-section area of hangers and 

cables, elasticity of cables) 
[35] 

FEM+RSM 
(not SFEM) arch bridge 

system reliability assessment (uncertain 
section area, inertia, and resistant moments of 

the girders) 
[36] 

4 Computer implementation, feasibility issues 
Although the range of SFEM applications in the probabilistic assessment of bridge structures 
seems wide, some limitations of this approach were identified, especially in regard to the 
level of computer implementation. There are not many widely available or commercial 
computer programs that implement the full SFEM procedure in the variant of SSFEM or 
Perturbation SFEM. Examples of such are SFESTA and SFEDYN. These programs were 
developed by Kleiber and Hien [4] in the Fortran® programming language. Both tools cover 
the scope of a deterministic, stochastic and sensitivity analysis with the use of the 
perturbation approach. The first one concerns the static analysis of 3D trusses and the second 
the dynamic analysis of 3D frames. Only one-dimensional elements can be used (no plate, 
shell or block elements can be used). These tools were further used and developed for the 
probabilistic computations of bridges by the authors of [21] and [22]. The presented results 
of a probabilistic seismic analysis of a cantilever bridge and a cable-stayed bridge indicate 
the high efficiency of perturbation SFEM in relation to MCS. However, to the author’s 
knowledge, the aforementioned computer program, even after developments, does not have 
capabilities of using finite elements other than one-dimensional ones. Therefore, higher-class 
models (e2s2, e2s3, or e3s3) or the ones that use several element types are not applicable.  

The spectral version of SFEM (SSFEM) is also used for rather simple structural models 
[23-26]. Despite the author’s efforts in the literature review, no higher-class models of 
bridges were found to be evaluated be means of SSFEM. However, it should be emphasized 
that there are some open-source MATLAB® implementations of SSFEM available e.g. [37, 
38], which can be further developed and modified in the future. 

Advanced models with different types of finite elements – which are most commonly 
used in real-life bridge engineering – are still analysed by these SFEM variants which are 
based on multiple calculations of a deterministic model (which is often prepared in 
commercial FEM systems e.g. MIDAS®, LUSAS®, DIANA®, ARSAP®, SOFiSTiK®, 
SCIA®, ATENA®, CivilFEM®, RM Bridge®, ANSYS®, ABAQUS®, etc.) with later 
analysis of adequate responses. It is in particular MCS and RFM. Also, RSM (which is 
implemented to e.g. ANSYS®) and PEM are still very popular, and seem to be important 
alternatives to SFEM in many aspects of bridge infrastructure assessment computations. 
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FEM+MCS (LHS) three-span, 
suspension bridge 

damping and flutter speed (structural and 
aerodynamic uncertainties) [29] 

FEM+MCS 
three-span, 

suspension bridge 
(as in [29]) 

seismic analysis (uncertainties in seismic 
excitation) [30] 

FEM+MCS 
RSM 

two PC box girders, 
four-span, road 

bridge 

FE model validation  (uncertain material 
properties, stiffness of support bearings and 

expansion joints, stiffness between two 
adjacent box-girders) 

[31] 
[32] 

FEM+MCS 
RSM masonry arch bridge 

stochastic response, namely stresses and 
displacements (random ground motion, 

uncertain material properties) 
[33] 

FEM+MCS 
RSM 

large-span 
suspension bridge 

Probabilistic free vibration and flutter analysis 
(uncertain material properties and stiffness) [34] 

FEM+ improved  
RSM 

(not SFEM) 

large-span 
suspension bridge 

risk assessment for the construction phases 
(random cross-section area of hangers and 

cables, elasticity of cables) 
[35] 

FEM+RSM 
(not SFEM) arch bridge 

system reliability assessment (uncertain 
section area, inertia, and resistant moments of 

the girders) 
[36] 

4 Computer implementation, feasibility issues 
Although the range of SFEM applications in the probabilistic assessment of bridge structures 
seems wide, some limitations of this approach were identified, especially in regard to the 
level of computer implementation. There are not many widely available or commercial 
computer programs that implement the full SFEM procedure in the variant of SSFEM or 
Perturbation SFEM. Examples of such are SFESTA and SFEDYN. These programs were 
developed by Kleiber and Hien [4] in the Fortran® programming language. Both tools cover 
the scope of a deterministic, stochastic and sensitivity analysis with the use of the 
perturbation approach. The first one concerns the static analysis of 3D trusses and the second 
the dynamic analysis of 3D frames. Only one-dimensional elements can be used (no plate, 
shell or block elements can be used). These tools were further used and developed for the 
probabilistic computations of bridges by the authors of [21] and [22]. The presented results 
of a probabilistic seismic analysis of a cantilever bridge and a cable-stayed bridge indicate 
the high efficiency of perturbation SFEM in relation to MCS. However, to the author’s 
knowledge, the aforementioned computer program, even after developments, does not have 
capabilities of using finite elements other than one-dimensional ones. Therefore, higher-class 
models (e2s2, e2s3, or e3s3) or the ones that use several element types are not applicable.  

The spectral version of SFEM (SSFEM) is also used for rather simple structural models 
[23-26]. Despite the author’s efforts in the literature review, no higher-class models of 
bridges were found to be evaluated be means of SSFEM. However, it should be emphasized 
that there are some open-source MATLAB® implementations of SSFEM available e.g. [37, 
38], which can be further developed and modified in the future. 

Advanced models with different types of finite elements – which are most commonly 
used in real-life bridge engineering – are still analysed by these SFEM variants which are 
based on multiple calculations of a deterministic model (which is often prepared in 
commercial FEM systems e.g. MIDAS®, LUSAS®, DIANA®, ARSAP®, SOFiSTiK®, 
SCIA®, ATENA®, CivilFEM®, RM Bridge®, ANSYS®, ABAQUS®, etc.) with later 
analysis of adequate responses. It is in particular MCS and RFM. Also, RSM (which is 
implemented to e.g. ANSYS®) and PEM are still very popular, and seem to be important 
alternatives to SFEM in many aspects of bridge infrastructure assessment computations. 

5 Summary 
Probabilistic tools are more and more often used for an analysis of bridge objects. It is not 
only about their traditional use, for example for the design of standards, but also about the 
analysis of specific bridge infrastructure objects in order to adequately represent sources of 
uncertainty. An important part of these methods is SFEM, which is implemented in three 
main versions: perturbation SFEM, SSFEM and FEM + MCS. The scope of applications of 
these methods in assessing bridges is wide. It concerns, among others, reliability, dynamic 
(mass in motion, bridge-vehicle interaction), seismic, wind load or static structural (including 
local effects analysis) analyses. Unfortunately, the implementation and use of the  full SFEM 
procedure in a perturbation or spectral variant usually requires the creation of an individual 
computer code. Therefore, many of the collected examples refer to very simple FEM models. 
In the case of more sophisticated FE models and the usage of deterministic, commercial FEM 
programs well-known to bridge engineers, MSC and RFM seem to be a valuable solution. In 
many aspects, a strong alternative to the last two mentioned variants of SFEM are still RSM 
and PEM. 
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financing of young scientists (University of Bielsko-Biała, Poland, Faculty of Materials, Civil and 
Environmental Engineering)  

References 
1. D. Gransberg, C. Lopez, D. Humphrey, J. of Constr. Eng. and Manag., 133(6), 404–408, 

Jun. (2007) 
2. J. D. Arregui-Mena, L. Margetts, and P. M. Mummery, Arch. of Comput. Meth. in Eng., 

23(1), 171–190, Mar. (2016) 
3. G. Stefanou, Comp. Methods in Appl. Mech. and Eng., 198, 9–12 (2009) 
4. M. Kleiber and T. D. Hien, The Stochastic Finite Element Method: Basic Perturbation 

Technique and Computer Implementation. Wiley (1993) 
5. R. Ghanem and P. Spanos, Stochastic Finite Elements - a spectral approach., 2nd-nd ed. 

Dover Publications (2002) 
6. A. Nowak and K. Collins, Reliability of Structures, International. McGraw-Hill Higher 

Education (2000) 
7. W. E. Boyce and B. E. Goodwin, J. of the Soc. for Ind. and Appl. Math., 12(3), 613–629 

(1964) 
8. G. C. Hart and J. D. Collins, ‘The treatment of randomness in finite element modelling’, 

presented at the SAE shock and vibration symposium, Los Angeles, 2509–2519 (1970) 
9. T. K. Hasselman and G. C. Hart, J. of the Eng. Mech. Div., 98, 561–579 (1972) 
10. B. Huang, J. Liu, and H.-B. Gao, ‘Statistic eigenvalue analysis of engineering structures 

based on substructure recursive stochastic finite element method’, presented at the 9th 
International Symposium on Structural Engineering for Young Experts, Fuzhou & 
Xiamen, China, 1, 18–21 (2006) 

11. M. Kamiński, The Stochastic Perturbation Method for Computational Mechanics, 1st-st 
ed. Viley (2013) 

12. K. Karhunen, Über lineare Methoden in der Wahrscheinlichkeitsrechnung. Sana (1947) 
13. M. Loeve, Probability Theory I, 4th ed. New York: Springer-Verlag (1977) 
14. M. Kac and A. J. F. Siegert, Ann. Math. Statist., 18(3), 438–442, Sep. (1947) 

7

E3S Web of Conferences 45, 00062 (2018)	 https://doi.org/10.1051/e3sconf/20184500062
INFRAEKO 2018



15. A. Haldar and S. Mahadevan, Reliability Assessment Using Stochastic Finite Element 
Analysis, 1 edition. New York: Wiley (2000) 

16. J. Szafran and M. Kamiński, Int. J. of Appl. Mech. and Eng., 22(1), (2017) 
17. M. M. Kamiński and P. Świta, Comp. & Str., 89(11–12), 1241–1252, Jun. (2011) 
18. G. E. P. Box and K. B. Wilson, J. of the Royal Stat. Soc., 13(1), 1–45 (1951) 
19. E. Rosenblueth, Point estimates for probability, 72 (1975) 
20. C. Che-Hao, T. Yeou-Koung, and Y. Jinn-Chuang, Appl. Math. Model., 19(2), 95–105, 

Feb. (1995) 
21. Ö. Çavdar, A. Bayraktar, and S. Adanur, Prob. Eng. Mech., 25(2), 279–289, Apr. (2010) 
22. Ö. Çavdar, A. Bayraktar, and A. C. Altunışık, Civil Eng. and Envir. Sys., 32(3), 193–

205, Jul. (2015) 
23. S. Q. Wu and S. S. Law, Prob. Eng. Mech., 26(2), 281–293, Apr. (2011) 
24. S. Q. Wu and S. S. Law, Mech. Sys. and Sig. Proc., 27, 576–589, Feb. (2012) 
25. T.-P. Chang, Appl. Math. and Comput., 242, 20–35, Sep. (2014) 
26. S. Q. Wu and S. S. Law, Eng. Str., 32(4), 1016–1027, Apr. (2010) 
27. A. Montoya, G. Deodatis, R. Betti, and H. Waisman, J. of Comp. in Civil Eng., 29, Aug. 

(2014) 
28. D. M. Frangopol, A. Strauss, and S. Kim, J. of Bridge Eng., 13(3), 258–270, (2008) 
29. T. Argentini, A. Pagani, D. Rocchi, and A. Zasso, J. of Wind Eng. and Ind. Aero., 128, 

90–104, May (2014) 
30. L. Sgambi, E. Garavaglia, N. Basso, and F. Bontempi, Eng. Str., 78, 100–111, Nov. 

(2014) 
31. Z. Zong, X. Lin, and J. Niu, J. of Traf. and Transp. Eng. (Engl. Ed.), 2(4),  258–278, 

Aug. (2015) 
32. X. Lin, Z. Zong, and J. Niu, J. of Traf. and Transp. Eng. (Engl. Ed.), 2(4), 279–289, Aug. 

(2015) 
33. K. Hacıefendioğlu, H. B. Başağa, and S. Banerjee, Constr. and Buil. Mat., 134, 199–

209, Mar. (2017) 
34. J. Cheng and R. Xiao, Eng. Str., 27(10), 1509–1518, Aug. (2005) 
35. T. Cho and T. S. Kim, Finite El. in An. and Design, 44(6–7), 383–400, Apr. (2008) 
36. A. S. Nowak and T. Cho, J. of Constr. Steel Res., 63(12), 1561–1569, Dec. (2007) 
37. A. Der Kiureghian, T. Haukaas, and K. Fujimura, Struct. Saf., 28(1), 44–67, Jan. (2006) 
38. F. U. Castillo, ‘Probabilistic analysis of structures using stochastic finite elements’, 

Masters Thesis, Universidad Nacional de Colombia (2015) 

8

E3S Web of Conferences 45, 00062 (2018)	 https://doi.org/10.1051/e3sconf/20184500062
INFRAEKO 2018


