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Abstract. The paper is concerned with the probabilistic modeling of 
pipeline network hydraulic conditions that occur due to random impacts of 
the external environment (load of consumers, pressures at sources). The 
research is focused on a network with a tree configuration under 
conventional boundary conditions (for pressure at a tree root and flow rates 
at the other nodes) that are specified probabilistically. We propose a 
topological method for a probabilistic analysis of such network operation. 
This method makes it possible to determine mathematical means, variances 
and covariances of state variables (pressures at nodes, flow rates and 
pressure losses in branches) by final formulas when traversing the entire 
tree without laborious matrix operations or calculations of systems of 
equations.  A numerical case study is used to exemplify the efficiency of 
the proposed approach, adequacy of the obtained results and high speed 
compared to other, more general methods similar to Monte-Carlo methods. 

1 Introduction 

Flow distribution problems are primary in an analysis and substantiation of  operating 
conditions of pipeline systems of various types and purposes for their design, operation and 
dispatch control. Traditionally, these problems are solved with deterministic mathematical 
models and methods, which however do not allow the assessment of the extent to which the 
pipeline system operation affected by a set of random factors is uncertain. This explains the 
relevance of the probabilistic flow distribution problem statements, which imply obtaining 
calculation results in the form allowing probabilistic interpretation based on the information 
on the so called boundary conditions in a probabilistic form. Solving such problems with 
traditional methods, for example with Monte Carlo method [1], is associated with excessive 
computational efforts even for the pipeline systems of a medium size. 

2  Analysis of literature and problem statement 
To date, Russia and other countries have carried out many studies dealing with the tasks 
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and methods for calculation of steady-state flow distribution in pipeline systems of different 
types and purposes. 

The experience of flow distribution modeling in the papers by E. Todini [2–4], O. 
Giustolisi [5,6],  is characterized mainly by their focus on deterministic, steady-state and 
quasidynamic flow distribution. In Russia, the flow distribution problems similar in 
statement were solved already in the 1930s by Andriyashev M.M. [7], and Lobachev V.G. 
[8], and generalized in the studies by A.P.Merenkov and V.Y.Khasilev [9]. 

The issues of stochastic flow distribution and optimization of parameters under 
uncertainty in  water supply systems (in their design) are considered in the studies by 
S.N.Karambirov [10, 11]. In these studies, the statistical models (time series, 
autocorrelation functions) are used to take into account the stochastic nature of water 
consumption. The authors of [12, 13] put an emphasis on probabilistic problems considered 
in the analysis of pipeline system operating conditions, given pumps and reservoirs.  These 
problems are mainly solved  by Monte Carlo method  which is also widely used in the 
analysis of pipeline system reliability. 

The authors of [14–18] propose an approach to the development of analytic probabilistic 
models of steady-state hydraulic conditions. This approach, for example, can be applied to 
the water and heat supply systems under stochastic water consumption. The general and 
stage-by-stage methods presented in [14-17] are characterized by their universality, 
satisfactory accuracy and low computational efforts compared to the classical Monte Carlo 
method. They can be used to determine all probabilistic characteristics of steady-state 
conditions in pipeline systems of random configuration and any set of  boundary conditions 
specified in a probabilistic form.  The methods are aimed at obtaining mathematical means 
for state variables and calculating a covariance matrix of these variables based on a 
specified covariance matrix of boundary conditions and a derivative matrix of flow 
distribution model at the point of mathematical mean of boundary conditions, and involve                                                       
matrix operations including inverse of a derivative matrix  [14-18].  

3 Object, goal and objectives of studies 
An object of the research discussed in the paper is a tree pipeline network. The goal is to 
develop an effective method and an algorithm for calculation of statistic characteristics 
(mathematical means, variances, and covariances) of hydraulic state variables (pressures, 
flow rates) that occurred as a result of random impact of the external environment  and that 
are specified  probabilistically for pressure at one node (a tree root) and flow rates at the  
other  nodes. 

To achieve this goal we set the following  objectives for the research: 1)  to obtain final 
formulas for calculation of statistic characteristics of state variables; 2) to develop a 
topological method ( and an algorithm for calculation), that identify the sequence in which 
the obtained formulas should be applied; 3) to numerically check the operability of the 
topological method and accuracy of the obtained solution in comparison with the other 
methods  (Monte Carlo and general  methods). 

4 The main principles of the topological method 
We will introduce the notion of a tier of nodes with index k, which represents a set of nodes 

kJ , such that | |jR k , where jR  – a set of branches  belonging to the path from a tree root 
to node j. Thus, the k-th tier contains all nodes of the scheme that are connected with root k 
by branches. Let us put the direction of branches of the tree scheme in correspondence with 
the direction of flows. Assign the first numbers (indices) to the nodes of the last tier, the 
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kJ , such that | |jR k , where jR  – a set of branches  belonging to the path from a tree root 
to node j. Thus, the k-th tier contains all nodes of the scheme that are connected with root k 
by branches. Let us put the direction of branches of the tree scheme in correspondence with 
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next numbers - to the tier before last, and so on. Only one flow goes into each node, 
therefore the branches can always be numbered so that the branch index will coincide with 
the index of a final node, i.e. fii j  .  Let us introduce  a set of branches jI , incident to 

node  j, that can now be represented by j jI j I   , where jI   is  a set of branches going 
from node  j.  

By virtue of the mentioned principle of node and branch numbering,  we obtain: 
1) o >fi i , 1,i n ,  where o , fi i  are the  indices of initial and final nodes  of the  i-th 

branch; 
2) node with an external source (tree root) will have index  m; 
3) 0 { }J m , 1

k

k j
j J

J I 




  , 1, 1k K  ; 

4) the number of tiers in the scheme will be determined as 1| | 1K R  ; 

5) j l  for all kj J  and 1kl J  , 0, 1k K  , therefore, the enumeration of 
nodes 1,...,j m  means a successive traversing through the tiers  in the direction of  

1,...,0k K   and on the contrary, enumeration of nodes ,...,1j m  implies traversing in 
the direction of  0,..., 1k K  . Figure 1 demonstrates an example of introduced 
numbering. 

 
 
 
 
 
 
 
 
 
 
 
 
 

The topological method implies successively traversing the nodes of the calculation 
scheme by tiers, starting with the nodes for which the boundary conditions are specified 
with relatively simple algebraic relationships in each step to determine the  unknown values 
of mathematical means, variances and covariances of state variables. 

From now on we assume that the set of boundary conditions (vector G ) is conventional  
T

1 2 1( , ,..., , )m mG Q Q Q P , where ,j jQ P  are flow rate and pressure at the j-th node. 

Boundary conditions are specified by their mathematical means G  and covariance matrix 
GC . Without loss of generality, for simplicity we will also consider all boundary conditions 

to be mutually uncorrelated, when cov( , ) 0j lG G   for j l  and 2cov( , )j l jG G   for 

j l , , 1,j l m , i.e. 2 2 2 2
1 2 1diag( , ,..., , )G Q Q Qm PmC      is a diagonal matrix of order 

dim( )G m .  

5 Calculation of mathematical means of state variables 
Let us explain the principle of traversing the nodes of the scheme on the example of a 

 
Fig.1.  An example of a tree scheme numbered for calcualtion by the topological 

method. 
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calculation of mathematical means of state variables. 
  Linearly independent equations of the first Kirchhoff law [9] will be presented in an index 
form: 

j

j i j
i I

x x Q


  , 1, 1j m  , where ix  is  flow rate in the i-th branch. The  

mathematical means of flow rates in the branches are calculated successively by the 
expression   

i

i t i
t I

x x Q


  , 1,i n ,                                        (1) 

which takes into account the fact that ii t I   . Therefore, by the time of calculating ix , 
all  ,t ix t I   are already known.  

The pressure drop in branches ( )i i iy f x , 1,i n , where ( )i if x  is  function for 
hydraulic characteristics of the branches, therefore, (1) can be used to  calculate  

  ( )i i iy f x , 1,i n .                                                 (2) 
 The remaining linearly dependent equation of the first Kirchhoff law makes it possible 

to determine   

m

m i
i I

Q x


  .                                                  (3) 

The mathematical means of nodal pressures are calculated using an index analog of 
equations of the second Kirchhoff law in a nodal form o fi i iP P y  , hence  

oj j jP P y  ,  ,1j n .                                        (4) 

The calculation starts for the nodes of tier 1k  , when  н j m , and mP   is known. In 

calculation of  jP  for 1k  , the values of  o jP  are also known, because  o >j j .  

6 Index-recurrent relationships for variances and covariances of 
state variables 
We will present the final relationships for the variances of state variables [18]: 

1) for  the variance of flow rates in branches  
2 2 2
, , ,

i

x i Q i x t
t I

  


   , 1, ;i n                      (5) 

2) for the variance of pressure drops in branches  

  22 ' 2
, , , , 1,y i x i x if i n   ,                                                (6) 

where  '
, /x i i if f x   , 1,i n ;   

3) for the variance of flow rates in branches  
2 2 2 ' 2

, ,Н , , , ,Н2 , 1,1P j P j y j x j x j jf f j m         ;                    (7) 
The value of  ,if  is calculated recurrently  – 

'
, , ,Н ,0,m j j x jf f f f     , 1,1j m  ;           (8) 

4) for the variance of the nodal flow rate at the source 
2 2

, ,
m

Q m x t
t I

 


  .                (9) 

7 Topological algorithm 
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7 Topological algorithm 

Thus, the proposed “topological” method for probabilistic modeling of hydraulic conditions 
for a tree network can be reduced to the following computational scheme. 

1. Forward pass. For each 1,i n , calculate: ix , 2
,x i

 
with respect to  (1), (5), and  

iy , 2
,y i  with respect to (2), (6). Determine  mQ , 2

,Q m  with respect to (3), (9). 

2. Backward pass. By assuming , 0mf  , for each 1,1j m  , determine  jP  

and 2
,P j with respect to (4), (7),  and , jf - with respect to (8) . 

8 Numerical case study 
Let us compare the probabilistic flow distribution characteristics for the scheme in Figure 1,  
that were calculated by different methods: Mote Carlo method, general method and 
topological method. The boundary conditions represent a set of mutually uncorrelated 
magnitudes 1 6 7{ ,..., , }G Q Q P  with numerical values of mathematical means 

{50; 5; 5; 3; 8,06; 5; 7}G   and mean square deviations 
{0,1; 0,86; 0,87; 0,3; 0,887; 0,5; 1,264} . The functions for hydraulic characteristics of 

branches have the form ( ) | |i i i i if x s x x , 1,i n , where is  – hydraulic resistance of the 
i -th branch. These resistances have the values {0,015; 0,0908; 0,0108; 0,015; 0,00646; 
0,00557}. Consequently, / 2 | |i i i if x s x   , 1,i n . 

Tables 1 and 2 contain calculated probabilistic characteristics for flow rates in the 
branches and nodal pressures by different methods. The characteristics of the nodal flow 
rate of the sources found by different methods are: 7Q =33,07, 2

,7Q = 2,046 (MCM); 

7Q =33,06, 2
,7Q = 2,054 (GM  and SSM). 

 

Table 1. Results of probabilistic modeling of flow rates in branches  

Branch,  i 
Monte Carlo method (N=5000) General method Topological method  

ix  ,x i  ix  ,x i  ix  ,x i  
1 4,99 0,86 5 0,86 5 0,86 
2 4,99 0,88 5 0,87 5 0,87 
3 12,99 1,27 13 1,26 13 1,26 
4 8,06 0,88 8,06 0,88 8,06 0,88 
5 26,04 1,61 26,06 1,62 26,06 1,62 
6 7,01 1,26 7 1,26 7 1,26 

Table 2.  Results of probabilistic modeling of nodal pressures  

Node, j 
Monte Carlo method (N=5000)

 
General method Topological method 

 
jP  ,P j  

jP  ,P j  
jP  ,P j  

1 43,40 0,94 43,41 0,94 43,41 0,94 

2 41,51 1,49 41,51 1,48 41,51 1,48 

3 43,77 0,85 43,78 0,85 43,78 0,85 

4 44,62 0,69 44,63 0,69 44,63 0,69 

5 45,62 0,55 45,61 0,55 45,61 0,55 

6 49,72 0,14 49,72 0,14 49,72 0,14 

7 50,00    0,1 50,00    0,1 50,00        0,1 
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As is seen, the results obtained by different methods virtually coincide. The calculation 
time with the topological method, however, is many times less than with general and Monte 
Carlo methods: Monte Carlo method (5000 realizations) – 206 s; General method – 1 s.; 
Topological method – 0.25 s.  

9 Conclusions 
The probabilistic modeling of flow distribution in the pipeline system of a tree 
configuration has been studied. The final expressions for the mathematical means and 
variances of state variables are calculated recurrently. A new topological method and an 
algorithm are developed to calculate all statistic parameters of hydraulic conditions while 
traversing the tree. The proposed method enables calculations without laborious matrix 
operations or solving the systems of equations. The numerical cases are used to exemplify 
the adequacy of the results obtained with the proposed method and its greater 
computational efficiency compared to the other alternative methods. 
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