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Abstract. The paper proposes a method to identify a pipeline system 
segment, containing several piping assemblies and branches, based on three-
dimensional calculations or experiments, as well as proves the applicability 
of proposed approach to search the local resistance coefficients of the section 
elements of the pipeline system, which describes the complex spatial 
structure, based on the known values of pressure drops and flow rates. 

Introduction 

Practically each industrial enterprise has one or another pipeline system in which gas or liquid 
flow distribution essentially influence technical, economic, and ecological characteristics of 
production in general. In some cases, objects under study can be represented as a hydraulic 
network [1]. The network may contain structural elements, whose local resistance 
significantly affects the nature of flow distribution. Sometimes, determining the resistance 
coefficients of these elements by existing empirical and analytical dependencies[2,3] is 
impossible.  

Applying spatial simulation [4,5] to these structural elements allows defining hydraulic 
characteristics and using them in network design model. Earlier, the authors in [6,7] 
mentioned the difficulty of integrating models with a large number of independent inputs. 
Building a certain network analog of the element was proposed as one of the possible ways 
to solve this problem. Although this approach has limited applicability and accuracy as 
compared to the option with direct integration of the three-dimensional element into the 
network model [8], it allows quickly constructing the hydraulic network model and obtaining 
the results of calculations.  

As an example of the use of proposed approach, the authors consider the problem on 
simulation of a multi-tiered scrubber (Fig.1). Scrubber is a complex object with five 
independent inlets. Using a full spatial model or hybrid model with directly embedded three-
dimensional element into a network model [6,7] results in excessive computational costs. 
The authors used a simplified network model of this object (Fig. 2). To determine the 
parameters of the network elements, several three-dimensional calculations were carried out. 
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In consequence of these calculations, knowing flow rates at the inlet, we determined pressure 
drops between the scrubber inlets and outlets (Table. 1). 

 

 
Fig. 1. Scrubber: a) geometry; b) static pressure (Pa); c) streamlines. 

 

Fig. 2. Network model of scrubber. 

The network analogue of the spatial scrubber model (Fig. 2) was divided into several 
zones:  
1. the zone of all inlets, whose geometric similarity suggests the existence of a single local 

resistance coefficient at all sites in the zone;  
2. the zone of a lifting pipe from the 1st  to 4th   tier, where small velocities allowed 

suggesting that the influence of the local resistance of these tiers on the flow distribution 
in the scrubber will be insignificant and, accordingly, local resistance was set to 0 for 
all sections of the zone;  

3. the zone of a lifting pipe from the 4th  to 5th tier;  
4. the zone of access to the fan. 

Accordingly, the problem was reduced to finding three local resistance coefficients for 
zones 1, 3 and 4 satisfying the condition of minimum difference between the pressure drop 
in the scrubber for network computations and 3D calculations. Initially, the coefficients were 
found by the exhaustive search method [6,7]. Unfortunately, such a search method becomes 
too expensive at a large number of unknown parameters. In this regard, it turned out to be 
advisable developing a search algorithm to find parameters of the network section based on 
known data from the results of 3D calculation or experiment.  
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Table 1. Calculation data of scrubber 3D model 

 
1st 3D calculation 2nd 3D calculation 3rd 3D calculation 

Pressure, 
Pa 

Flow rate, 
kg/s 

Pressure, 
Pa 

Flow rate, 
kg/s 

Pressure, 
Pa 

Flow rate, 
kg/s 

1st tier 799 6.60 2712 13.20 555 6.60 
2nd tier 952 7.80 2019 7.80 210 0.10 
3rd tier 950 8.12 3263 16.30 196 0.10 
4th tier 656 5.14 1529 5.14 383 5.14 
5th tier 934 9.86 1566 9.86 836 9.86 
Outlet 0 37.52 0 52.27 0 21.80 

Flue ducting calculation model 

As a mathematical model to describe the fluid flow in the network, a model of steady-state 
flow of incompressible fluid was adopted. For representation of pipeline system we use the 
directed graph[9], whose constraint matrix is presented in the following form: 
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where 𝑙 ∈ 𝑂�– is the plurality of pipes coming out from the i-th piping assembly; 𝑙 ∈ 𝐼�– is 
the plurality of pipes going into the i-th piping assembly. The problem of flow distribution 
in the network can be reduced to a combination of the mass conservation law in the piping 
assembly (2), and the flow resistance law in the pipe (3): 
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where N – is the set of all network piping assemblies; U – is the set of all network branches; 
xl – is the flow rate in the branch (kg/s); hl(xl) – is the pressure loss (Pa); p – is the pressure 
(Pa). 

Finding a solution to this nonlinear system of equations is carried out by the nodal 
pressure method. That is, the following flow rate and pressure is sought through the 
correction: 
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Substituting equations (4) and (5) in (2) and (3) it is easy obtaining a system of linear 
algebraic equations (SLAE) for the pressure correction: 
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here Nbdr,Ninner – are sets of boundary nodes and computational nodes, respectively; Ubdr,Uinner  
– are sets of boundary branches and computational branches, respectively. Pressure is fixed 
in the boundary nodes, while flow rate is fixed in the boundary branches. 

Search for local resistance coefficients  

For the identified branches, we determine the correction of the analyzed value in the form of 
[10]: 
 1K KС С dС    (7) 

where C can be, for example, diameter or local resistance.  
Substituting (5) and (7) in (2) and (3) we obtain SLAE, which associates the correction 

of some magnitude in the branches with the resulting pressure change in the nodes. 
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Where dpi- is the pressure change; dC - is the correction.  The left part of equation (6) at 
the final iteration coincides with the left part of the SLAE of the correction (8). 

It is easy to show that the resulting pressure change for the sum of the different impacts 
is equal to the sum of the pressure changes of these impacts. Using the computation results 
of the SLAE (8) this allows determining the SLAE for correction of the variable: 

 , ,
m
I
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m

dp
C P p m U I M

dC
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here mC  – is the correction of the identified value, identm U – is the set of identifiable 
objects, PI

m – is the required pressure in the control points, pI
m  – is the pressure in the 

specified nodes (control points) of the network model for which the model is adapted, 
controlI M  - is the set of control points. 

The coefficient dpm
I/dCm is defined as the ratio of pressure change in the control node dpI 

to the corresponding change of the identified value dCmand is found through the solution of 
the equations system (8) for all options of control actions. The object being identified can be 
understood as both a single branch and a group of similar branches (by example 1, Fig. 2).  

In this example, the control points are the inlets to the scrubber (Table 1).  The required 
pressure PI is taken from the corresponding 3D calculation (three 3D calculations, 5 nodes in 
each, 15 calculation points in total). The resulting system of equations is over-defined [11]. 
A fixed flow rate is given on boundary branches. 
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The coefficient of local resistance in the formula for pressure loss is the identifiable value: 
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where m  – is the local resistance coefficient; sl – is the cross-

sectional area of the pipeline (m2), and ρl – is the flow density (kg/m3). The right part of 
SLAE (8) can be represented as: 
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The above allows proposing the following algorithm for searching the local resistance of 
identifiable branches: The network model (2, 3) is calculated for each three-dimensional 
calculation, in which the flow rate is fixed at the boundary branches. To calculate matrix 
columns dpm

I/dCm, SLAE (8) is solved for each three-dimensional calculation and for each 
identifiable object. New local resistance coefficients are calculated after solving resulting 
SLAE (9), after which the cycle repeats over again. 

The result of solving the test task 

Table 2. The local resistance coefficient 

 Search 
method Option 1 Option 2 Option 3 

1st tier 2.8 2.4 2.5 2.7 
2nd tier 2.8 2.0 2.5 2.7 
3rd tier 2.8 2.3 2.5 2.7 
4th tier 2.8 2.2 2.5 2.7 
5th tier 2.8 2.6 2.5 2.7 

1st and 2nd tiers 0 0 1.8 0 
2nd and 3rd tiers 0 0 0 0 
3rd and 4th tiers 0 1.5 1.2 0 
4th and 5th tiers 2.8 2.1 1.8 2.5 

Outlet 2 2.2 2.3 2.1 

The proposed algorithm was applied to calculate the multi-tier scrubber. Three grouping 
options of local resistance coefficients were considered: 1– all branches are considered to be 
independent; 2 – inlets at tiers are united into a single block (zone 1 in Fig. 2); and 3 – the 
option fully corresponds to the problem statement as in the exhaustive search method. Table 
2 shows the local resistance coefficients for all three options. The exhaustive search method 
and the method proposed in option 3 gave similar results.  

Table 3 shows the comparison of the models with respect to the pressure drop. In all 
options, pressure drops are close to the data obtained through 3D modeling, while the error 
does not exceed the accuracy of calculations accepted for engineering practice. 

Conclusion 

We proposed a method for determining the parameters of the network branches based on to 
the three-dimensional calculation. The local resistance coefficients of several branches of the 
network model based on the spatial simulation are determined on the example of calculations 
of a multi-tier scrubber. 
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Table 3. Comparison of network models 

No. of 3D caculation 1st  calculation 

 3D 
calculation 

Exhaustive 
search method Option 1 Option 2 Option 3 

1st tier 799 990 1003 995 966 
2nd tier 952 1118 1053 1095 1086 
3rd tier 950 1154 1113 1127 1121 
4th tier 656 854 778 788 837 
5th tier 934 1087 1003 1059 1076 

No. of 3D calculation 2nd  calculation 
  3D 

calculation 
Exhaustive 

search method Option 1 Option 2 Option 3 

1st tier 2712 2714 2680 2678 2619 

2nd tier 2019 1817 1915 1901 1819 

3rd tier 3263 3385 3215 3221 3255 

4th tier 1529 1595 1454 1446 1556 

5th tier 1567 1431 1459 1464 1447 

No. of 3D calculation 3rd  calculation 

  3D 
calculation 

Exhaustive 
search method Option 1 Option 2 Option 3 

1st tier 555 502 460 481 489 
2nd tier 210 179 189 188 182 
3rd tier 196 178 188 188 181 
4th tier 383 375 332 351 367 
5th tier 836 844 800 773 816 
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